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Abstract

The fractional Brownian motion (fBm) is parameterized by the Hurst exponent
H ∈ (0, 1), which determines the dependence structure and regularity of sample
paths. Empirical findings suggest that for various phenomena, the Hurst exponent
may be non-constant in time, giving rise to the so-called multifractional Brownian
motion (mBm). The Itô-mBm is an alternative to the classical mBm, and has
been shown to admit more intuitive sample path properties. In this paper, we
show that Itô-mBm also allows for a simplified statistical treatment compared to
the classical mBm. In particular, estimation of the local Hurst parameter H(t)
with Hölder exponent η > 0 achieves rates of convergence which are standard in
nonparametric regression, whereas similar results for the classical mBm only hold
for η > 1. Furthermore, we derive an estimator of the integrated Hurst exponent∫ t
0 H(s) ds which achieves a parametric rate of convergence, and use it to construct
goodness-of-fit tests.

1 Introduction

Fractional Brownian motion (fBm) is a centered Gaussian process BH
t with covariance

function Cov(Xs, Xt) =
1
2
(|t|2h + |s|2H − |t − s|2H), for a scale parameter σ2 > 0 and a

so-called Hurst-exponent H ∈ (0, 1). It admits the Mandelbrot-van Ness representation

BH
t =

∫ t

−∞
σ [(t− s)

H− 1
2

+ − (−s)H− 1
2

+ ] dBs,

∗The majority of this work was done while both authors were employed at RWTH Aachen University,
Germany, funded by the Federal Ministry of Education and Research (BMBF) and the Ministry of
Culture and Science of the German State of North Rhine-Westphalia (MKW) under the Excellence
Strategy of the Federal Government and the Länder.
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where Bs is a standard Brownian motion, and (x)+ = x · 1x>0. The fBm and related
processes have been widely applied in diverse fields. The Hurst exponent H is of major
interest, as it governs the long-range dependence of the process, the regularity of sample
paths, and the self-similarity.

In some applications, empirical evidence suggests that a single Hurst exponent H
is not sufficient and a temporally-varying Hurst exponent Ht is more appropriate. A
nonstationary generalizations of the fBm, the multifractional Brownian motion (mBm),
has been introduced by Peltier and Lévy Véhel (1995) as

Xt =

∫ t

−∞
σ [(t− s)

Ht− 1
2

+ − (−s)Ht− 1
2

+ ] dBs. (1)

See also Stoev and Taqqu (2006) for related definitions of mBm. Recently, Ayache et al.
(2018) suggested an alternative nonstationary generalization of the fBm, given by

Xt =

∫ t

−∞
σs [(t− s)

Hs− 1
2

+ − (−s)Hs− 1
2

+ ] dBs. (2)

Following Loboda et al. (2021), we refer to (1) as the classical mBm, and to (2) as
Itô-mBm. Both processes behave locally like a fBm, i.e. h−Ht(Xt+h − Xt) ⇒ BHt

h as
h → 0. Thus, they are both valid candidate models for nonstationary extensions of
the fBm. Probabilistic and statistical analysis of the classical mBm is facilitated by the
fact that its covariance function admits an explicit expression (Stoev and Taqqu, 2006,
Thm. 4.1). On the other hand, the Itô-mBm is well-defined as Itô integral if the Hurst
exponent Ht is an (adapted) stochastic process. Moreover, the latter process has been
shown in Loboda et al. (2021) to have attractive analytical features, see also Ayache
and Bouly (2021). In particular, the regularity of its sample paths depends only on the
values of Ht, whereas for the classical mBm, the regularity of t 7→ Ht is crucial as well.
The goal of this paper is to demonstrate that the Itô-mBm is not only preferable from
an analytical point of view, but also allows for improved statistical inference compared
to the classical mBm.

Estimators for fBm from low-frequency observations X1, . . . , Xn are reviewed and
compared by Bardet (2018). Optimality of the MLE has been established by Cohen et al.
(2013), and by Brouste and Fukasawa (2018) for the high-frequency regime X1/n, . . . , X1.
Local nonparametric estimators for the classical mBm (1) have be introduced by Coeur-
jolly (2005), Bertrand et al. (2013) and Bardet and Surgailis (2013). More recently, Shen
and Hsing (2020) developed rate-optimal local nonparametric estimators ofHt exploiting
higher-order smoothness. Lebovits and Podolskij (2017) estimate the global regularity
mintHt, and Bertrand et al. (2018) describe a goodness-of-fit test for the Hurst function.
Further works on estimation of the mBm include, among others, Pianese et al. (2018);
Garcin (2017); Bianchi et al. (2013). Estimation for some alternative non-stationary ex-
tensions of fBm allowing for irregular Ht is studied by Benassi et al. (2000) and Ayache
and Lévy Véhel (2004); Ayache et al. (2007).

The limitation of all works on the classical mBm (1) is that they require t 7→ Ht

to be Hölder continuous with exponent η > suptHt. This restriction is necessary to
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ensure a good local approximation of the process by a stationary fBm, see e.g. (Bardet
and Surgailis, 2013, eqn. 7.14). It also emerges in the path properties of mBm, whose
local Hölder coefficient at time t is min(η,Ht) (Herbin, 2006, Prop. 13). In contrast,
prior work on the path properties of the Itô-mBm (2) has revealed that the lower bound
on η is not necessary for this alternative multifractional extension of fBm, as the local
Hölder exponent is Ht, regardless of the value of η > 0. The purpose of this article is to
demonstrate that the Itô-mBm is not only attractive from an analytical perspective, but
also statistically favorable. In particular, we show that a local estimator of Ht achieves
standard nonparametric rates of convergence depending on η, regardless of maxtHt.
In view of its elegant analytical and statistical properties, we propose the Itô-mBm as
canonical nonstationary variant of the fBm.

To date, the only statistical treatment of the Itô-mBm is due to Ayache and Bouly
(2023), showing uniform consistency of a localized Hurst estimator. Their estimator is
analogous to the estimator we propose below, but the rate derived therein is slower,
indicating that their asymptotic analysis is suboptimal. Here, we study two estimators
Ĥn(u) and Ĥ

†
n(u) based on local polynomial regression, which achieve the rate n−η/(2η+1)

for η ≤ 1 (exactly for Ĥ†
n, and up to logarithmic factors for Ĥn). This rate is standard in

nonparametric estimation, and our results show that estimation of the Itô-mBm works
just as expected – in stark contrast to estimation of the classical mBm, where estimators
in the regime η < 1 admit non-standard rates of convergence (Bardet and Surgailis,
2013).

Beyond the local estimation of Ht, we derive an estimator Ĥ(u) of the integrated

parameter H(u) =
∫ u

0
Hv dv, and the error Ĥ − H converges to a Gaussian process

at rate
√
n. We use this estimator to construct a changepoint test for constant Hurst

exponent, and goodness-of-fit test for the function t 7→ Ht. An important feature of
both tests is that they are robust to a non-constant volatility σt, which constitutes a
nuisance under the null hypothesis. Our mathematical results are based on a functional
central limit theorem for locally stationary time series established in Mies (2024), and
the proof technique linking methods for stochastic processes in discrete and continuous
time might be of independent interest.

We advocate for the use of Itô-mBm over the classical mBm on the basis of its
attractive analytical and statistical properties. However, this is a purely mathematical
argument and not based on empirical evidence in applications. Obviously, the looming
open questions are: (i) Can we distinguish the two models based on data? (ii) Do the
two models lead to different conclusions for practical questions, e.g. forecasting or asset
pricing? We formulate these open questions as promising directions for future research,
especially in view of the recent success of fractional models for stochastic volatility
(Gatheral et al., 2018; Chong and Todorov, 2025).

The pointwise nonparametric estimator of the Hurst exponent is studied in Section 2.
The integrated parameter estimator is introduced in Section 3, including the changepoint
test and the goodness-of-fit test. All technical proofs are gathered in the Appendix.
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2 Local nonparametric estimation

Performing high-frequency inference for the the Itô-mBm (2), we want to estimate the
exponent Hs nonparametrically, using discrete observations X 1

n
, . . . , Xn

n
. For simplicity

of exposition, we suppose that X− k
n
for k = 1, 2, 3 are also observable, and we define the

second order increments as

χi,n = X i
n
− 2X i−1

n
+X i−2

n
, i = 1, . . . , n,

χ̃i,n = X i
n
− 2X i−2

n
+X i−4

n
, i = 1, . . . , n.

Our estimation procedure is based on the change-of-frequency principle introduced by
Kent and Wood (1997), which is a special case of the quadratic variation estimator of
Istas and Lang (1997), and has also been used by Coeurjolly (2001): If Hs = H and
σs = σ are constant, the self-similarity of the fBm yields E(χ̃2

i,n)/E(χ2
i,n) = 22H , such

that the moment estimator given by Ĥ = 1
2
log2

(∑
i χ̃

2
i,n/
∑

i χ
2
i,n

)
is consistent at rate√

n. For estimation of the Itô-mBm, we use the same idea, but localize the moment
estimator around time u ∈ (0, 1). To this end, we use a kernel function K : R → [0,∞)
satisfying ∫

K(x) dx = 1, K(x) = 0 for |x| > 1,

{x : K(x) > 0} has positive Lebesgue measure.

(K)

and a bandwidth b = bn > 0, denote Kb(x) = 1
b
K(x

b
). For a bandwidth b = bn > 0,

denote Kb(x) =
1
b
K(x

b
), and for any u ∈ (0, 1), consider the locally weighted polynomial

regression (Fan and Gijbels, 2018; Tsybakov, 2008)

min
q

n∑
i=1

Kbn(
i
n
− u)

∥∥∥∥(χ2
i,n

χ̃2
i,n

)
− q( i

n
)

∥∥∥∥2 ,
where the minimum q∗ is determined among all polynomials q : (0, 1) → R2 of degree l

We use ϕ̂n(u) = q∗(u) as moment estimator at location u. It is well known (Tsybakov,
2008, Lem. 1.3 & Prop. 1.12) that the estimator admits the linear representation

ϕ̂n(u) =
n∑

i=1

wi,n(u)

(
χ2
i,n

χ̃2
i,n

)
,

and the weights satisfy, for some universal C > 0, and for all u ∈ [bn, 1− bn],

(i) supi |wi,n(u)| ≤ C
nbn

,

(ii)
∑n

i=1 |wi,n(u)| ≤ C,

(iii) wi,n(u) = 0 for | i
n
− u| > bn

(iv)
∑n

i=1wi,n(u) = 1 and
∑n

i=1(
i
n
− u)kwi,n(u) = 0 for k = 1, . . . , l.
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Remark 1. If K is supported on [−1, 0] such that still {x ∈ [−1, 0] : K(x) > 0} has
positive Lebesgue measure, then the latter properties (i)–(iv) hold for all u ∈ [bn, 1].
Similarly, if K is supported on [0, 1], then (i)–(iv) hold for all u ∈ [0, 1− bn]. Moreover,
if K(x) > K01(|x| < τ) for some small τ > 0 and K0 > 0, then properties (i)–(iv) hold
for all u ∈ [0, 1].

We estimate Hu via the log-ratio estimator

Ĥn(u) =

(
1

2
log2

(
ϕ̂n,2(u)

ϕ̂n,1(u)

))
∨ 0 ∧ 1.

Theorem 1. Suppose that v 7→ θv = (σv, Hv) is Hölder continuous with exponent η ∈
(0, l + 1], and that 0 < H ≤ Hv ≤ H < 1 for all v, and 0 < σ2 ≤ σ2

v ≤ σ2 < ∞. If
bn ≪ nq−1 for some q ∈ (0, 1), then for any p ≥ 2,

Ĥn(u) = Hu +OLp

(
log(n)⌈η⌉bηn +

1√
n bn

)
+O

(
log(n)n−(1∧η)) .

The bound holds uniformly for θ ∈ [σ2, σ2]× [H,H], and u ∈ [bn, 1− bn].

The upper bound is minimized for bn ≍ n− 1
2η+1 log(n)−

2⌈η⌉
2η+1 , so that

Ĥn(u) = Hu +OLp

(
log(n)

⌈η⌉
2η+1n− η

2η+1

)
.

Remark 2. Under the conditions described in Remark 1, the bounds of Theorem 1 and
Proposition 8 in the appendix can be extended to u ∈ [bn, 1], u ∈ [0, 1−bn], and u ∈ [0, 1],
respectively.

For the locally constant variant, i.e. l = 1, this estimator is the same as considered by
Coeurjolly (2005) for the classical mBm. Central to this approach is the scaling relation

E(χ̃2
i,n)/E(χ2

i,n) ≈ 22Hi/n , and the estimator Ĥ(u) utilizes this by estimating the mean
first, and then taking the ratio. An alternative approach pursued by Shen and Hsing
(2020) is to take the ratio first, and smooth second. This leads to the local polynomial
estimator

Ĥ†
n(u) =

1

2

n∑
i=1

wi,n(u) log2

(
χ̃2
i,n

χ2
i,n

)
.

Again, we may constrain the estimator manually to the interval [0, 1]. It turns out
that this estimator leads to an improvement of the rate of convergence by a logarithmic
factor. Compared to the results of Shen and Hsing (2020) for the classical mBm, we
show that this estimation approach, when applied to the Itô-mBm, also works for less
smooth Hurst functions, η < 1.

Theorem 2. Under the conditions of Theorem 1, the estimator Ĥ†
n satisfies

Ĥ†
n(u) = Hu +O (bηn) +OL2

(
1√
n bn

)
+O

(
log(n)n−(1∧η)) .
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The upper bound is minimized for bn ≍ n− 1
2η+1 , so that

Ĥ†
n(u) = Hu +OL2

(
n− η

2η+1

)
.

Remark 3. The estimator of Shen and Hsing (2020) achieves the rateO((n log(n)2)−
η

2η+1 ).
The logarithmic advantage can be attributed to the fact that they suppose σ to be
constant in time. It may thus be estimated at a faster rate, and is essentially known for
the local estimation of Hu, which allows for slightly better estimation of the latter. The
same phenomenon of logarithmically faster rates if σ is known has been shown for the
stationary case of the fBm (Brouste and Fukasawa, 2018).

Remark 4. The slower rate of the estimator Ĥu is due to a logarithmically larger bias
of the estimator ϕ̂n(u). In particular, Lemma 3 in the appendix shows that Eχ2

i,n ≈
n2Hi/nσ2

i/nΓHi/n
(0), and since H appears in the exponent, differentiating with respect to

H to control the bias yields additional terms of order log(n).

3 Integrated parameter estimation

Another approach to treat the Hurst parameter nonparametrically is via the integrated
parameter

H(u) =

∫ u

0

Hv dv.

Interest in this functional arises because many hypotheses about Hu may be formulated
in terms of H(u). For instance, the no-change hypothesis Hv = H0 for all v is equivalent
to H(u) = uH(1); monotonicity of Hu is equivalent to convexity of H(u); and Hv ≥ H
is equivalent to H(u2) − H(u1) ≥ H(u2 − u1) for all u2 ≥ u1. We will discuss these
examples in detail below.

A naive estimator for the integrated Hurst parameter H(u) can be obtained by

integrating the local estimator, i.e. H̃(u) =
∫ u

0
Ĥn(v) dv. However, as discussed in (Mies,

2021), this estimator will in general be asymptotically bias-driven. Instead, we employ a
generic linearization procedure which has been introduced in (Mies, 2021) in the context
of locally-stationary time series. To this end, we propose the estimator

Ĥ(u) =
1

n

⌊un⌋∑
t=2L

{
Ĥn(

t−L
n
) +

χ̃t,n

2ϕ̂n,2(
t−L
n
)
− χt,n

2ϕ̂n,1(
t−L
n
)

}
,

where Ĥn uses a kernel which is supported on [−1, 0]. That is, Ĥn(
t
n
) only uses data up

to time t
n
.

Remark 5. If t ≤ ⌈nbn⌉, the one-sided estimators ϕ̂n(
t
n
) and Ĥn(

t
n
) effectively use the

bandwidth t
n
≤ bn. This is due to the boundary adaptation of the local polynomial

regression.
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Theorem 3. Suppose that v 7→ θv = (σv, Hv) is Hölder continuous with exponent η ∈
(1
2
, 1], and that 0 < H ≤ Hv ≤ H < 1 for all v, and 0 < σ2 ≤ σ2

v ≤ σ2 < ∞. Suppose
furthermore that bn, Ln are chosen such that

n− 1
2
+r ≪ bn ≪ n− 1+2r

4η for some r ∈ (0, 1
2
),

n
1
6
− r

3 ≪ Ln ≪ n
1
2
−δ for some δ ∈ (0, 1

2
),

na ≪ Ln for some a > 0.

Then, as n→ ∞

√
n(Ĥ(u)−H(u)) ⇒

∫ u

0

τ(Hv) dWv
d
= W

(∫ u

0

τ 2(Hv) dv

)
,

in the Skorokhod space D[0, 1]. The local asymptotic variance τ 2(H) is defined in (9).

Remark 6. The condition on Ln is rather weak, and any choice Ln ≍ na for some
a ∈ (1

6
, 1
2
) will satisfy the conditions. The choice of bn basically needs to ensure that the

local estimator ϕ̂n(u) and hence Ĥn(u), admits a sufficiently fast rate of convergence of

order O(n− 1
4
− r

2 ). The feasible range of choices for bn allows for this rate to be driven by
bias or variance, and may always be satisfied for η > 1

2
.

We denote the limiting variance process by Σ(u) =
∫ u

0
τ 2(Hv) dv. To perform sta-

tistical inference, we may estimate this process via the plug-in method as Σ̂(u) =
1
n

∑⌊un⌋
t=2Ln

τ 2(Ĥn(
t
n
)).

Theorem 4. Under the conditions of Theorem 3, supu∈[0,1]

∣∣∣Σ(u)− Σ̂(u)
∣∣∣ P−→ 0.

That is, the limiting process W (Σ(u)) of Theorem 3 is approximated by W (Σ̂(u)),
which allows for feasible statistical inference. In the next two subsections, we proceed
to describe two specific hypothesis tests based on the estimator for the integrated Hurst
parameter.

3.1 Testing for constant Hurst exponent

The estimator for the integrated Hurst exponent can be used to test for a constancy,
that is, to treat the statistical problem

H0 : Hv constant ↔ H1 : Hv not constant.

Rejecting H0 is interpreted as evidence that a model based on fBm is not sufficient,
and multifractional extensions need to be considered. This problem has been studied
by Bibinger (2020). Therein, the specific multifractional model, i.e. Itô-mBm (2) vs
classical mBm (1), does not matter, because the process is stationary under the null.
Bibinger (2020) employs a CUSUM statistic based on the squared increments χ2

t,n. The
test is applied to sunspot data, finding evidence for nonstationarity. A methodological
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limitation of the referenced method is that it will detect both changes in σv and in Hv,
and a post-hoc analysis is necessary to distinguish both types of changes. In contrast, we
would like to design a test which is only sensitive to changes in Hv, while being robust
against changes in σv. That is, we treat the volatility as a nuisance. The relevance of
allowing for nonstationary nuisance quantities under the no-change null hypothesis was
first recognized by Zhou (2013), and further developed by Dette et al. (2019); Górecki
et al. (2018); Pesta and Wendler (2020); Demetrescu and Wied (2018); Schmidt et al.
(2021); Cui et al. (2021). To the best of our knowledge, changepoint testing with nonsta-
tionary nuisance quantities has not yet been considered for continuous-time processes.

To test for a change, we suggest the CUSUM-type statistic

TCUSUM(Ĥ) = sup
u∈[0,1]

∣∣∣Ĥ(u)− uĤ(1)
∣∣∣ .

Under H0, and if the volatility function satisfies the conditions of Theorem 3, the statistic√
nT (Ĥ) will converge in distribution to supu∈[0,1] |W (Σ(u))− uW (Σ(1))|. This can be

used to derive critical values.

Proposition 1. Suppose that the conditions of Theorem 3 hold. Let qn(α) be the 1−α,

X-conditional quantile of the random variable Yn = supu∈[0,1]

∣∣∣W (
Σ̂(u)

)
− uW (Σ̂(1))

∣∣∣.
If Hv is constant, then

lim sup
n→∞

P
(√

nTCUSUM(Ĥ) > qn(α)
)
≤ α.

Alternatively, if Hv is not constant, then

lim
n→∞

P
(√

nTCUSUM(Ĥ) > qn(α)
)
= 1.

3.2 Application to goodness-of-fit testing

Let G0 ⊂ {H : [0, 1] → (0, 1)} be a class of candidate functions for the Hurst parameter,
and we want to test the null hypothesis

H0 : H ∈ G0 ↔ H1 : H /∈ G0.

For example, setting G0 = {Hv = av+b | b ∈ (0, 1), a+b ∈ (0, 1)} yields a test for linearity,
and setting G0 = {H | ∃v0 s.t. H is increasing on [0, v] and decreasing on [v, 1]} tests for
unimodality. We suggest to apply the test statistic

T̂ (G0) = inf
H̃∈G0

T̂ (H̃), where T̂ (H̃) = sup
u∈[0,1]

∣∣∣∣Ĥ(u)−
∫ u

0

H̃(v) dv

∣∣∣∣ .
Under H0, we clearly have

√
nT̂ (G0) ≤

√
nT̂ (H) ⇒ supu∈[0,1]

∣∣∫ u

0
τ(Hv) dWv

∣∣, and we
can use the quantiles of the latter as critical values. Importantly, we can estimate
the asymptotic variance function as in Theorem 4, which is also consistent under the
alternative. As a result, we obtain a consistent test.
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Proposition 2. Suppose that the conditions of Theorem 3 hold. Let qn(α) be the 1−α,

X-conditional quantile of the random variable Zn = supu∈[0,1] |W (Σ̂(u))|. If H ∈ G0,
then

lim sup
n→∞

P
(√

n T̂ (G0) > qn(α)
)
≤ α.

Alternatively, if H /∈ G0 and G0 is closed with respect to the uniform norm, then

lim
n→∞

P
(√

n T̂ (G0) > qn(α)
)
= 1.

An alternative goodness-of-fit test for the classical mBm and a singleton null G0 =
{H̃} has been suggested by Bertrand et al. (2018), based on a Cramer-von-Mises type

test statistic of the form
∑L

l=1 |Ĥn(
l
l
) − H̃( l

L
)|2 which they show to be asymptotically

normal if L = Ln → ∞ suitably as n→ ∞. However, they do not specify the constraints
on Ln, making their test practically infeasible. Moreover, they suppose σ to be constant.

A Multiplier invariance principle

For the proof of Theorem 3, we make use of a functional central limit theorem for
nonstationary time series, developed in Mies (2024). To make this article self-contained,
we repeat the essential assumptions and the result in this section.

For iid random seeds ϵi ∼ U(0, 1), and functions Gt,n : R∞ → Rd, t = 1, . . . , n, define
the nonstationary array of time series Xt,n as

Xt,n = Gt,n(ϵt), t = 1, . . . , n,

ϵt = (ϵt, ϵt−1, . . .) ∈ R∞.

Throughout this section, we assume that E(Xt,n) = 0. For an independent copy ϵ̃i ∼
U(0, 1), define also

ϵ̃t,h = (ϵt, . . . , ϵt−h+1, ϵ̃t−h, ϵt−h−1 . . .) ∈ R∞,

ϵt,h = (ϵt, . . . , ϵt−h+1, ϵ̃t−h, ϵ̃t−h−1 . . .) ∈ R∞.

We first impose the following set of assumptions, for some Γn ≥ 1 and β > 1:

∥G1,n(ϵ0)∥L2 +
n∑

t=2

∥Gt,n(ϵ0)−Gt−1,n(ϵ0)∥L2 ≤ ΘnΓn, (A.1)

max
t=1,...,n

∥Gt,n(ϵ0)−Gt,n(ϵ̃0,h)∥Lq ≤ Θn(h+ 1)−β, (A.2)∫ 1

0

∥G⌊vn⌋,n(ϵ0)−Gv(ϵ0)∥L2 dv → 0. (A.3)

For non-random matrices gt,n, gu ∈ Rm×d, and random matrices ĝt,n ∈ Rm×d, define
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Λn =

√√√√ n∑
t=1

∥ĝt,n − gt,n∥2L2
,

Ψn =
n∑

t=2

|gt,n − gt−1,n|,

Φn = max
t=1,...,n

|gt,n|+ sup
u∈[0,1]

|gu|,

and formulate the assumption ∫ 1

0

∥g⌊vn⌋,n − gv∥ dv → 0. (A.4)

Define the rate

χ(q, β) =


q−2
6q−4

, β ≥ 3
2
,

(β−1)(q−2)
q(4β−3)−2

, 1 < β < 3
2
,

1
2
− 1

β+1
, 1 < β ≤ 2

1+ 2
q

,

and the local long run covariance matrices

Σt,n =
∞∑

h=−∞

gt,nCov[Gt,n(ϵ0), Gt,n(ϵh)]g
T
t,n,

Σu =
∞∑

h=−∞

gu Cov[Gu(ϵ0), Gu(ϵh)]g
T
u .

Theorem 5. Suppose that ĝt,n is ϵt−L-measurable for L = Ln, and let (A.3), (A.1),
(A.2), (A.4) hold with Θn,Φn = O(1) such that

n− 1
2Λ2

n + ΛnL
−β
n + n

1
q
− 1

2Ln → 0

(Γn +Ψn)
β−1
2β

√
log(n)n−ξ(q,β) → 0.

Then

1√
n

⌊un⌋∑
t=1

ĝt,n[Xt,n − E(Xt,n)] ⇒
∫ u

0

Σ
1
2
v dWv.

B Proofs

B.1 Preliminaries

For H ∈ (0, 1), define

γH(h) = |h+ 1|2H − 2|h|2H + |h− 1|2H , h ∈ R,

10



ΓH(h) = −γH(h+ 1) + 2γH(h)− γH(h− 1).

Note that γH(h) is the autocovariance function of the increments of a fractional Brownian
motion with Hurst parameter H, and ΓH(h) is the autocovariance of the corresponding
second order increments. In particular, if (σs, Hs) ≡ (σ,H), then Cov(χi,n, χj,n) =
n−2Hσ2ΓH(i− j). Moreover, we note that ΓH(h) ≍ |h|2H−4 as |h| → ∞.

We proceed to give quantitative bounds on the approximation error between the
nonstationary process and its stationary tangent process. The following Lemma is in
analogy to (Coeurjolly, 2005, Lemma 1) for the classical mBm. The notable difference
is that we do not require η > supvHv, which is an advantage of the Itô-mBm model.

Lemma 3. Suppose that v 7→ θv = (σv, Hv) is Hölder continuous with exponent η ∈ (0, 1]
on some open interval I = (a, b] ⊂ (−∞, 1], and that 0 < H ≤ Hv ≤ H < 1 for all
v ∈ (−∞, 1], and σ2

v ≤ σ2 <∞. For any θ = (σ2, H) and i
n
∈ I, it holds that

n2HEχ2
i,n = σ2ΓH(0) +O

(
log(n)n−η

)
+O

(
∥θ − θ i

n
∥ log(n)n2∥θ−θ i

n
∥
)
.

For any interval I, the bound holds uniformly for θ ∈ [0, σ2]× [H,H].

Proof of Lemma 3. Denote ti =
i
n
, and αs = Hs − 1

2
. Then, by Itô’s formula,

Eχ2
i,n =

∫ ti

−∞
σ2
s

[
(ti − s)αs

+ − 2(ti−1 − s)αs
+ + (ti−2 − s)αs

+

]2
ds

= n−1

∫ n·ti

−∞
σ2
s/n

[
(ti − s

n
)
αs/n

+ − 2(ti−1 − s
n
)
αs/n

+ + (ti−2 − s
n
)
αs/n

+

]2
ds

=

∫ i

−∞
n−2Hs/nσ2

s/n

[
(i− s)

αs/n

+ − 2(i− 1− s)
αs/n

+ + (i− 2− s)
αs/n

+

]2
ds

=

∫ ∞

0

g(v, θ i
n
− v

n
) dv, θv = (Hv, σ

2
v),

g(v, θ) = n−2Hσ2
[
vH− 1

2 − 2(v − 1)
H− 1

2
+ + (v − 2)

H− 1
2

+

]2
.

Now observe that

|∂σg(v, θ)| ≤ n−2H [v2H−1 ∧ v2H−5],

|∂Hg(v, θ)| ≤ n−2H(16σ2)[v2H−1 ∧ v2H−5] [log(n) + | log(v)|].

We may thus bound∫ ∞

0

|g(v, θ)− g(v, θ i
n
− v

n
)| dv

≤
∫ ∞

0

|g(v, θ)− g(v, θ i
n
)| dv +

∫ ∞

0

|g(v, θ i
n
)− g(v, θ i

n
− v

n
)| dv

= A1 + A2,

11



where, for some small q ∈ (0, 1),

A1 ≤ Cn
−2(H∧H i

n
)
[
log(n)|H −H i

n
| + |σ2 − σ2

i
n
|
]
,

A2 ≤
∫ n1−q

0

|g(v, θ i
n
)− g(v, θ i

n
− v

n
)| dv

+

∫ ∞

n1−q

|g(v, θ i
n
)− g(v, θ i

n
− v

n
)| dv.

Using the local Hölder continuity of v 7→ θv, we find that∫ n1−q

0

|g(v, θ i
n
)− g(v, θ i

n
− v

n
)| dv

≤ C log(n) max
s∈[0,n−q ]

n
−2H i

n−s

∫ n1−q

0

(
v
n

)η |v2H−1 ∧ v2H−5|| log(v)| dv

≤ C log(n)n−2Hn−η,

because nn−ηq → 1. Moreover,∫ ∞

n1−q

|g(v, θ i
n
)− g(v, θ i

n
− v

n
)| dv ≤ C

∫ ∞

n1−q

sup
H∈[H,H]

n−2Hv2H−5 dv

=

∫ n

n1−q

(
v
n

)2H
v−5 dv +

∫ ∞

n

(
v
n

)2H
v−5 dv

≤ C(n(1−q)(2H−4)−2H + n−4)

≤ Cn−4+ϵ,

for any ϵ > 0, by making q > 0 sufficiently small. Since η ∈ (0, 1] and H ∈ (0, 1), the
choice ϵ = 1

2
yields n−4+ϵ ≪ log(n)n−2H−η.

Hence, we have shown that∫ ∞

0

g(v, θ i
n
− v

n
) dv =

∫ ∞

0

g(v, θ) dv +O
(
log(n)n−2H−η

)
+O

(
∥θ − θ i

n
∥ log(n)n−2H+2∥θ−θ i

n
∥
)
.

To complete the proof, we observe that
∫∞
0
g(v, θ) dv = n−2Hσ2ΓH(0).

Lemma 4. Suppose that v 7→ θv = (σ2
v , Hv) is Hölder continuous with exponent η ∈ (0, 1]

on some interval I = (a, b] ⊂ (−∞, 1], and that 0 < H ≤ Hv ≤ H < 1 for all v, and
σ2
v ≤ σ2 <∞. Then for all 1 ≤ i ≤ j ≤ n, such that i

n
∈ I,

Cov(χi,n, χj,n) = n−2Hi/nσ2
i/nΓHi/n

(i− j)

+O
(
log(n)n−2Hi/n−(η∧ 1

2
)(|i− j| ∨ 1)Hi/n− 5

2

)
.

For any interval I, the bound holds uniformly for θ ∈ [0, σ2]× [H,H].

12



Proof of Lemma 4. Denote ti =
i
n
, and αs = Hs − 1

2
. By Itô’s isometry,

Cov(χi,n, χj,n) =

∫ i
n

−∞
σ2
s

[
(ti − s)αs − 2(ti−1 − s)αs

+ + (ti−2 − s)αs
]

·
[
(tj − s)αs − 2(tj−1 − s)αs

+ + (tj−2 − s)αs
]
ds

=

∫ i

−∞
n−1σ2

s

[
( i
n
− s

n
)αs − 2( i−1

n
− s

n
)αs
+ + ( i−2

n
− s

n
)αs
]

·
[
( j
n
− s

n
)αs − 2( j−1

n
− s

n
)αs
+ + ( j−2

n
− s

n
)αs
]
ds

=

∫ ∞

0

n
−2H i−v

n σ2
s

[
v
α i−v

n − 2(v − 1)
α i−v

n
+ + (v − 2)

α i−v
n

]
·
[
(v + δ)

α i−v
n − 2(v + δ − 1)

α i−v
n

+ + (v + δ − 2)
α i−v

n

]
dv

=:

∫ ∞

0

f(v, δ, θ i−v
n
) dv,

for δ = j − i. We observe that, for δ ≥ 1,

∥Dθf(v, δ, θ)∥ ≤ C log(n)n−2H
[
vH− 1

2 ∧ vH− 5
2

]
· (v + δ)H− 5

2 (1 + | log(v)|)

≤ C log(n)n−2H(δ ∨ v)H− 5
2

[
vH− 1

2 ∧ vH− 5
2

]
=: C log(n)f(v, δ,H).

Using the η-Hölder continuity of v 7→ θv, with constant c, say, we find that∣∣∣∣Cov(χi,n, χj,n)−
∫ ∞

0

f(v, δ, θ i
n
) dv

∣∣∣∣
≤ C log(n)

∫ ∞

0

[(
v
n

)η ∧ 1
]

sup
H∈[H,H]

|H−Hi/n|≤c(v/n)η

f(v, δ,H) dv. (3)

We split the domain of integration into the three segments [0, 1], [1, n1−q], and [n1−q,∞),
for some small q ∈ (0, 1) to be specified later.
The first portion of the integral may be bounded as∫ 1

0

[(
v
n

)η ∧ 1
]

sup
H∈[H,H]

|H−Hi/n|≤c(v/n)η

f(v, δ,H) dv

≤ n−η−2Hi/n+cn−η

∫ 1

0

vH+η− 1
2 δHi/n+cn−η− 5

2 (1 + | log(v)|) dv

≤ Cn−η−2Hi/n δHi/n+cn−η− 5
2 .

The second portion of the integral may be bounded as∫ n1−q

1

[(
v
n

)η ∧ 1
]

sup
H∈[H,H]

|H−Hi/n|≤c(v/n)η

f(v, δ,H) dv

13



≤ n−η−2Hi/n+cn−qη

∫ n1−q

1

vHi/n+η− 5
2
+cn−qη

δHi/n− 5
2
+cn−qη

(1 + | log(v)|) dv

≤ n−η−2Hi/nδHi/n+cn−qη− 5
2

[
1 + n(1−q)(Hi/n+η− 3

2
+cn−qη)

]
≤ n−η−2Hi/nδHi/n+cn−qη− 5

2

[
1 + n(1−q)(Hi/n+η− 3

2
)
]
.

The third portion of the integral may be bounded as∫ ∞

n1−q

sup
H∈[H,H]

|H−Hi/n|≤c(v/n)η

f(v, δ,H) dv

≤
∫ ∞

n1−q

sup
H∈[H,H]

f(v, δ,H) dv

=

∫ ∞

n1−q

sup
H∈[H,H]

n−2HvH− 5
2vH− 5

2 dv

=

∫ ∞

n1−q

sup
H∈[H,H]

( v
n
)2Hv−5 dv

≤
∫ ∞

n1−q

( v
n
)2Hv−5 dv +

∫ ∞

n1−q

( v
n
)2Hv−5 dv

≤ Cn(1−q)(2H−4)−2H + Cn(1−q)(2H−4)−2H

≤ Cn−4(1−q) ≤ CδHi/n− 5
2n−2Hi/n−ϵ.

The last inequality holds for ϵ, q > 0 sufficiently small. We have thus established that∣∣∣∣Cov(χi,n, χj,n)−
∫ ∞

0

f(v, δ, θ i
n
) dv

∣∣∣∣
≤ C log(n)n−η−2Hi/nδHi/n− 5

2
+cn−qη

[
1 + n(1−q)(Hi/n+η− 3

2
)
]
+ Cn−4(1−q),

and using that δ ∈ [1, n],

≤ C log(n)δHi/n− 5
2n−2Hi/n

[
n−η + n(1−q)(H− 3

2
)
]
+ C(n

δ
)
5
2
−Hi/nn−4(1−q)

≤ C log(n)δHi/n− 5
2n−2Hi/n

[
n−η + n(1−q)(H− 3

2
) + n

5
2
+Hi/n−4(1−q)

]
≤ C log(n)δHi/n− 5

2n−2Hi/nn−(η∧ 1
2
).

To conclude the proof, we observe that
∫∞
0
f(v, δ, θ) dv is the lag-δ autocovariance

of the second order increments at frequency 1
n
of a fractional Brownian motion with

parameters θ = (σ2, H). Thus,∫ ∞

0

f(v, δ, θ) dv = n−2Hσ2 ΓH(i− j).

In the derivations above, we assumed that i > j. For i = j, the claim is a direct
consequence of Lemma 3, with θ = θi/n.
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Lemma 5. Let the conditions of Lemma 4 hold, and define Zi,n = (χ2
i,n, (χi,n+2χi−1,n+

χi−2,n)
2)T . Then

Cov(Zi,j, Zj,n) = n−4Hi/nσ4
i/nΣHin

(i− j) +O
(
log(n)n−4Hi/n−(η∧ 1

2
)(|i− j| ∨ 1)2Hi/n−5

)
= O

(
n−4Hi/n(|i− j| ∨ 1)−3

)
,

where

ΣH(h) := 2

(
ΓH(h)

2 (ΓH(h) + ΓH(h+ 1))2

(ΓH(h) + ΓH(h− 1))2 (2ΓH(h) + ΓH(h− 1) + ΓH(h+ 1))2

)
, h ∈ Z.

The bound holds uniformly for θ ∈ [0, σ2]× [H,H].

Proof of Lemma 5. Define Yi,n = (χi,n, χi,n+2χi−1,n+χi−2,n)
T , and introduce the matrix.

ΓH(h) :=

(
ΓH(h) ΓH(h) + ΓH(h+ 1)

ΓH(h) + ΓH(h− 1) 2ΓH(h) + ΓH(h− 1) + ΓH(h+ 1)

)
.

Via Lemma 4, we find that

Cov(Yi,n, Yj,n) = n−2Hi/nσ2
i/nΓHi/n

(i− j) +O
(
log(n)n−2Hi/n−(η∧ 1

2
)(|i− j| ∨ 1)Hi/n− 5

2

)
.

Note that the matrix ΣH(h) is twice the entry-wise square of ΓH(h), and that |ΓH(h)| ≍
h2H−4. Hence, Lemma 6 yields

Cov(Zi,j, Zj,n) = n−4Hi/nσ4
i/nΣHin

(i− j) +O
(
log(n)n−4Hi/n−(η∧ 1

2
)(|i− j| ∨ 1)2Hi/n−5

)
.

Lemma 6. For two centered, jointly Gaussian random variables X, Y , it holds Cov(X2, Y 2) =

Cov(X, Y )2 Var(X
2)

Var(X)2
= 2Cov(X, Y )2.

Proof. Write (X, Y ) = (X, aX + Z) for a = Cov(X, Y ), and Z centered Gaussian,
independent form X. Observe that for independent centered Gaussian random variables
X,Z, and a ∈ R, we have Cov(X2, (aX+Z)2) = a2Var(X2)+2aE(X3Z)+Cov(X2, Z2) =
a2Var(X2), and Cov(X, aX + Z) = aVar(X).

Lemma 7. There exists a universal K such that for any two centered, jointly Gaussian
random variables X, Y , ∣∣Cov(log(X2), log(Y 2))

∣∣ ≤ K|ρ|.

Proof. Since this specific covariance is invariant to rescaling of X and Y , we may assume
both are standard normal, with correlation ρ. We proceed similar to the proof of (Shen
and Hsing, 2020, Lemma 8.5).
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Denote by Hl : R → R the l-th Hermite polynomial (i.e. of degree l), and decompose
log(x2) =

∑∞
l=0 clHl(x). Because log(X2) ∈ L2(P ), the sequence cl is square-summable.

Moreover,

Cov(log(X2), log(Y 2)) =
∞∑

k,l=0

clck Cov(Hl(X), Hk(Y )).

Now use Cov(Hl(X), Hk(Y )) = ρkk!1(l = k) (Shen and Hsing, 2020, S.3.4) to find that

Cov(log(X2), log(Y 2)) =
∞∑
k=1

c2kρ
kk!.

Because Cov(log(X2), log(X2)) <∞, corresponding to ρ = 1, we conclude that
∑

k c
2
kk! <

∞. This yields |Cov(log(X2), log(Y 2))| ≤ |ρ|
∑

k c
2
kk!.

B.2 Local nonparametric estimation

The error of ϕ̂n(u) admits the following asymptotic representation.

Proposition 8. Suppose that v 7→ θv = (σv, Hv) is Hölder continuous with exponent
η ∈ (0, l + 1], and that 0 < H ≤ Hv ≤ H < 1 for all v, and σ2

v ≤ σ2 <∞. If bn ≪ nq−1

for some q ∈ (0, 1), then for any p ≥ 2,

n2Huϕ̂n(u) = σ2
uΓHu(0) ·

(
1

22Hu

)
+O

(
log(n)⌈η⌉bηn

)
+OLp

(
1√
n bn

)
+O

(
log(n)n−(1∧η))

For any p, the bound holds uniformly for θ ∈ [0, σ2] × [H,H], and for all (bn, u) such
that u ∈ [bn, 1− bn].

Proof of Proposition 8. Lemma 3 yields

E
(
ϕ̂n,1(u)

)
=

n∑
i=1

wi,nEχ2
i,n =

n∑
i=1

wi,nn
−2Hi/nσ2

i/nΓHi/n
(0) +O

(
log(n)n−(1∧η)−2Hu

)
,

⇝ E
(
n2Huϕ̂n,1(u)

)
=

n∑
i=1

wi,nn
2(Hu−Hi/n)σ2

i/nΓHi/n
(0) +O

(
log(n)n−(1∧η)) .

A Taylor expansion of the function µn(s) = n2(Hu−Hs)σ2
sΓHs(0), together with the prop-

erties of the weights, yields,

E
(
n2Huϕ̂n,1(u)

)
= µn(u) +O

(
bηn log(n)

⌈η⌉)+O
(
log(n)n−(1∧η))

The same bound holds for ϕ̂n,2, hence

E
(
n2Huϕ̂n(u)

)
= σ2

uΓHu(0) ·
(

1
22Hu

)
+O

(
log(n)n−(1∧η))+O

(
bηn log(n)

⌈η⌉) ,
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and the bound holds uniformly in u ∈ (0, 1).
To bound the stochastic term, we use Lemma 5 which yields∥∥∥Cov (n2Huϕ̂n(u)

)∥∥∥ ≤ n4Hu

n∑
i,j=1

wi,n(u)wj,n(u) ∥Cov(δi,n, δj,n)∥

≤ C2

n2 b2n

n∑
i=1

n∑
j=1

1| i
n
−u|≤bn

1| j
n
−u|≤bn

∥Cov(Zi,n, Zj,n)∥.

For | i
n
− u| ≤ bn ≪ n1−q, and | j

n
− u| ≪ n1−q, by virtue of Lemma 5,

∥Cov(Zi,n, Zj,n)∥ ≤ C(|i− j| ∨ 1)−3n−4Hu .

Thus, ∥∥∥Cov (n2Huϕ̂n(u)
)∥∥∥ ≤ C

1

n2b2n

n∑
i,j=1

1| i
n
−u|≤bn

1| j
n
−u|≤bn

(|i− j| ∨ 1)−3

≤ C
1

n2b2n

⌈n(u+bn)⌉∧n∑
i=⌊n(u−bn)⌋∨1

∞∑
j=−∞

(|i− j| ∨ 1)−3 ≤ C

n bn
.

This establishes the upper bound on the stochastic term of ϕ̂n(u) in L2. To obtain the

bound in Lp, we observe that ϕ̂n(u) belongs to the second Wiener chaos, such that all
Lp norms are equivalent (Nourdin and Peccati, 2012, 2.8.14).

Proof of Theorem 1. Proposition 8 yields

Ĥn(u) =
1

2
log2

(
22Huσ2ΓHu(0) +O(log(n)⌈η⌉bηn) +OLp(1/

√
nbn)

σ2ΓHu(0) +O(log(n)⌈η⌉bηn) +OLp(1/
√
nbn)

)
=

1

2
log2

(
22Hu +O(log(n)⌈η⌉bηn) +OLp(1/

√
nbn)

)
= Hu +OLp

(
log(n)

⌈η⌉
2η+1n− η

2η+1

)
.

Proof of Theorem 2. Denote ai,n = Eχ2
i,n and ãi,n = Eχ̃2

i,n. Then χ2
i,n

d
= ai,nZ

2 for

Z ∼ N (0, 1), and χ̃2
i,n

d
= ãi,nZ

2, so that Lemma 3 yields

E log2

(
χ̃2
i,n

χ2
i,n

)
= log2

(
ãi,n
ai,n

)
+
[
E log2(Z

2)− E log2(Z
2)
]
= log2

(
ãi,n
ai,n

)
= 2Hi/n + log2

(
(n/2)

2Hi/n ãi,n

n
2Hi/nai,n

)
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= 2Hi/n + log2

(
σ2ΓHi/n

(0) +O(log(n)n−(η∧1))

σ2ΓHi/n
(0) +O(log(n)n−(η∧1))

)
= 2Hi/n + log2

(
1 +O(log(n)n−(η∧1)))

= 2Hi/n +O
(
log(n)n−(η∧1)) .

Thus, by standard bias bounds for local polynomial estimators, we obtain the bias bound
E(Ĥ†

n(u)) = H(u) +O(bηn + log(n)n−(η∧1)).
To control the variance, we use Lemma 7 to find that

Var

(
n∑

i=1

wi,n(u) log2(χ
2
i,n)

)
≤ K

n∑
i,j=1

|wi,n(u)wj,n(u)| · |Cor(χi,n, χj,n)| .

In the following, K is a generic constant which may vary from line to line. Lemma 4
yields

|Cor(χi,n, χj,n)| ≤ K|i− j|2H−4 +K|i− j|H− 5
2 ≤ K|i− j|−

3
2 ,

which is summable. In combination with the boundedness and finite support of the
weights wi,n(u), we find

Var

(
n∑

i=1

wi,n(u) log2(χ
2
i,n)

)
≤ K

⌈n(u+bn)⌉∑
i,j=⌊n⌋(u−bn)⌋

wi,n(u)wj,n(u)(|i− j|+ 1)−
3
2

≤ K

nbn

∞∑
h=−∞

(|h|+ 1)−
3
2 = O(1/(nbn)).

Similarly, Var
(∑n

i=1wi,n(u) log2(χ
2
i,n)
)
= O(1/(nbn)), which in particularly yields

Var
(
Ĥ†

n(u)
)
= O

(
1

nbn

)
.

B.3 Integrated parameter estimation

Proof of Theorem 3. Step (i): Denote t0 = 2Ln. We may write the estimator Ĥ(u)
equivalently as

Ĥ(u) =
1

n

⌊un⌋∑
t=t0

{
m(ψ̂t,n) +Dm(ψ̂t,n) · (Zt,n − ψ̂t,n)

}
,

with

m : (0,∞)2 → R, (x, y) 7→
[
1
2
log( y

x
)
]
∨ 0 ∧ 1,
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Zt,n =
n2Ht/n

σ2
t/n

δt,n, ψu = ΓHu(0) ·
(

1
22Hu

)
, ψt,n = ψt/n

ψ̂t,n =
n2Ht/n

σ2
t/n

ϕ̂( t−Ln

n
) for t = t0, . . . , n, and ψ̂t,n = ψt,n for t = 1, . . . , t0 − 1.

Moreover, using the Lq bound of Lemma 8, we have for any q ≥ 2 and t = L +
⌈nbn⌉, . . . , n,

∥ψ̂t,n − ψt−L,n∥2Lq
= O

(
log(n)2⌈η⌉b2ηn + 1

nbn
+ log(n)2n−2(1∧η)

)
≤ O

(
log(n)2⌈η⌉n− 1

2
−r
)
.

Furthermore, for t ≤ 2L + 1, . . . , L + ⌈nbn⌉, the local polynomial estimator effectively
uses the smaller bandwidth t−L

n
≥ L, hence

∥ψ̂t,n − ψt−L,n∥2Lq
= O

(
log(n)2⌈η⌉( t−Ln

n
)2η + 1

t−Ln
+ log(n)2n−2(1∧η)

)
.

Moreover, ∥ψt−L,n − ψt,n∥2 = O((Ln/n)
2η), and hence ∥maxt=t0,...,n |ψ̂t,n − ψt,n|∥Lq =

O(n
1
q
−ϵ) +O((Ln/n)

η), for some ϵ > 0, which tends to zero for q large enough. Thanks
to this uniform convergence, we may restrict our attention to the event

An =

{
1

2
ψt,n ≤ ψ̂t,n ≤ 2ψt,n, ∀ t = 1, . . . , n

}
,

as P (An) → 1 as n→ ∞. In this event, a Taylor expansion of m around ψ̂t,n yields

Ĥ(u)− 1

n

⌊un⌋∑
t=1

m(ψt,n)

=
1

n

⌊un⌋∑
t=1

{
m(ψ̂t,n) +Dm(ψ̂t,n) · (Zt,n − ψ̂t,n)

}
− 1

n

n∑
t=1

m(ψt,n) +OP

(
Ln

n

)
=

1

n

⌊un⌋∑
t=1

Dm(ψ̂t,n) · (Zt,n − ψt,n) +OP

(
1

n

n∑
t=t0

∥ψ̂t,n − ψt,n∥2
)

+OP

(
Ln

n

)
, (4)

using in (4) that the second derivative D2m(ψ) is bounded in the specified neighborhood
of ψt,n, and the special definition ψ̂t,n = ψt,n for t = 1, . . . , t0 − 1. By Proposition 8 and
our assumption on bn and Ln, the latter term is of order oP (1/

√
n). Moreover, the

approximation (4) holds uniformly in u ∈ [0, 1].
Next, note that the Hölder regularity of Hv with exponent η yields

1

n

⌊un⌋∑
t=1

m(ψt,n) =
1

n

⌊un⌋∑
t=1

Ht/n =

∫ u

0

Hv dv +O(n−η),
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uniformly in u ∈ [0, 1]. Since η > 1
2
by assumption, we have shown that

√
n
[
Ĥ(u)−H(u)

]
=

1√
n

⌊un⌋∑
t=1

Dm(ψ̂t,n) · (Zt,n − ψt,n) + oP (1).

By Lemma 3, |E(Zt,n)− ψt,n| = O(log(n)n−η) = o(n− 1
2 ), and we obtain

√
n
[
Ĥ(u)−H(u)

]
=

1√
n

⌊un⌋∑
t=1

Dm(ψ̂t,n) · (Zt,n − EZt,n) + oP (1). (5)

Step (ii): We now apply the multiplier FCLT of Theorem 5 to the leading term in (5),
with

ĝt,n = Dm(ψ̂t,n)1An , gt,n = Dm(ψt,n), gu = Dm(ψu), Yt,n = Zt,n − EZt,n.

For this definition of gt,n and ĝt,n, (A.4) holds, Φn is bounded, and Ψn = O(n1−η).
Moreover, Proposition 8 shows that

Λ2
n ≤ C

n∑
t=t0

(
∥ψ̂t,n − ψt−L,n∥2L2

+ ∥ψt−L,n − ψt,n∥2
)

≤ C
(
log(n)2n

1
2
−r + L2η

n n
1−2η

)
+ C

Ln+⌈nbn⌉∑
t=2Ln

(
log(n)2( t−Ln

n
)2η + 1

t−Ln

)
≤ C

(
log(n)2n

1
2
−r + Lnn

1−2η + log(n)2 (nbn)
2η+1

n2η + log(nbn)
)

= O
(
log(n)2n

1
2
−r + Lnn

1−2η
)

It remains to check the conditions (A.3), (A.1), (A.2) for Yt,n. To write Yt,n in the
form Gt,n(ϵt) as in Appendix A, note that Yt,n is a functional of the driving Brownian
motion Bs, see Definition (??). Since all Polish spaces are Borel-isomorphic, there exists
a Borel-isomorphism φ : (0, 1) → C[0, 1], and iid random variables ϵt ∼ U(0, 1) such that
φ(ϵt) = [B̃u]u∈[0,1] =

√
n[Bu+t−1

n
− B t−1

n
]u∈[0,1] = φ(ϵt), for a standard Brownian motion

B̃. With this notation, we may write

nHi/n

σi/n
χi,n =

nHi/n

σi/n

∫ i/n

−∞
gi,n(s) dBs = G̃i,n(ϵi),

gi,n(s) = σs

[
( i
n
− s)

Hs− 1
2

+ − 2( i
n
− 1

n
− s)

Hs− 1
2

+ + ( i
n
− 2

n
− s)

Hs− 1
2

+

]
,

G̃i,n(ϵj) =
nHi/n

σi/n

∫ i/n

−∞
gi,n(s) dBs+ j−i

n

=
nHi/n

σi/n

∞∑
k=0

∫ (i−k)/n

(i−k−1)/n

gi,n(s) dBs+ j−i
n

=
nHi/n

σi/n

∞∑
k=0

∫ i−k

i−k−1

gi,n(
s
n
) 1√

n
dB̃s+(j−i)
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=
∞∑
k=0

∫ i−k

i−k−1

g̃i,n(s) dB̃s+(j−i)

=
∞∑
k=0

ζi,k,n(ϵj−k), ζi,k,n : (0, 1) → R, ζi,k,n(ϵj−k) ∈ L2(P ),

g̃i,n(s) =
σ s

n

σ i
n

n
H i

n
−H s

n ḡ(s− i,H s
n
),

ḡi(s,H) = (−s)H− 1
2

+ − 2(−1− s)
H− 1

2
+ + (−2− s)

H− 1
2

+ .

In particular, the Bernoulli shift of the ϵt is equivalent to shifting the driving Brownian
motion.
Ad (A.2): The ζi,k,n(ϵj) are centered Gaussian random variables with variance

∥ζi,k,n(ϵj)∥2L2
=

∫ i−k

i−k−1

|g̃i,n(s)|2 ds

≤ Cn
2(H i

n
−H i−k

n
)+Cn−η

(k + 1)
2H i−k

n
−5+Cn−η

≤ Cn
2(H i

n
−H i−k

n
)
(k + 1)

2H i−k
n

−5+δ
,

for δ > 0 small enough, and n large enough. If H i
n
< H i−k

n
, then ∥ζi,k,n(ϵj)∥2L2

≤
C(k+1)5H−5+δ ≤ C(k+1)−3 for δ small enough, because H < 1. If instead H i

n
< H i−k

n
,

we further distinguish two cases to obtain

∥ζi,k,n(ϵj)∥2L2
≤

{
C(k + 1)

2
1−δ

(H i
n
−H i−k

n
)
(k + 1)

2H i−k
n

−5+δ
, k ≥ n1−δ,

CnCn−δη
(k + 1)

2H i−k
n

−5+δ
, k < n1−δ,

≤

{
C(k + 1)

2
1−δ

H i
n
+ 2δ

1−δ
H i−k

n
−5+δ

, k ≥ n1−δ,

C(k + 1)2H−5+δ, k < n1−δ,

≤

{
C(k + 1)2

1+δ
1−δ

H−5+δ, k ≥ n1−δ,

C(k + 1)2H−5+δ, k < n1−δ,

≤ C(k + 1)−3,

for δ small enough. In all cases, we have shown that for all q ≥ 2, and for some C = Cq,

∥G̃i,n(ϵ0)− G̃i,n(ϵ̃0,h)∥Lq ≤ C∥ζi,h,n(ϵj)∥L2 ≤ C(h+ 1)−
3
2 ,

∥G̃i,n(ϵ0)∥Lq ≤ C.

Now note that Yt,n is a function of the G̃i,n(ϵi), in particular

Yi,n = Gt,n(ϵj) =

(
G̃t,n(ϵj)

2

(G̃t,n(ϵj) + 2G̃t−1,n(ϵj−1) + G̃t−2,n(ϵj−2))
2

)
, (6)
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and it is straightforward to derive

∥Gt,n(ϵ0)−Gt,n(ϵ̃0,h)∥Lq ≤ C(h+ 1)−
3
2 .

This establishes (A.2) with Θn = O(1) and exponent β = 3
2
.

Ad (A.1): Observe that∥∥∥G̃i,n(ϵ0)− G̃i−1,n(ϵ0)
∥∥∥2
L2

=
∞∑
k=0

∫ i−k

i−k−1

|g̃i,n(s)− g̃i−1,n(s− 1)|2 ds

≤ Cn−2ηnCn−η
∞∑
k=0

(k + 1)−3 (7)

+ CnCn−η
∞∑
k=0

∫ i−k

i−k−1

|ḡ(s− i,H s
n
)− ḡ(s− i,H s−1

n
)|2 ds

≤ Cn−2η +
∞∑
k=0

∫ −k

−k−1

|ḡ(s,H s
n
)− ḡ(s,H s−1

n
)|2 ds, . (8)

To bound the latter integral, we exploit the fact that

d

dH
ḡ(s,H) = 1s<0 log(−s)(−s)H− 1

2

− 21s<−1 log(−s− 1)(−s− 1)H− 1
2

+ 1s<2 log(−s− 2)(−s− 2)H− 1
2 ,

⇝

∣∣∣∣ ddH ḡ(s,H)

∣∣∣∣ ≤ C(1 + | log s|)min
(
|s|H− 1

2 , |s|H− 5
2

)
.

Hence, the mean value theorem yields some H̃s between H s
n
and H s−1

n
such that∫ −k

−k−1

|ḡ(s,H s
n
)− ḡ(s,H s−1

n
)|2 ds ≤

∫ −k

−k−1

|H s
n
−H s−1

n
|2
∣∣∣∣ ddH ḡ0,n(s,H)|H=H̃s

∣∣∣∣2 ds
≤ Cn−2η

∫ −k

−k−1

[1 + | log s|]
[
1|s|<1|s|2H−1 + 1|s|≥1|s|2H−5

]
, ds

≤ Cn−2η(k + 1)−3.

Using this bound in (8), and exploiting the Gaussianity, we obtain for all q ≥ 2∥∥∥G̃i,n(ϵ0)− G̃i−1,n(ϵ0)
∥∥∥2
Lq

≤ Cn−2η.

Since ∥G̃i,n∥Lq is bounded, it is straightforward to conclude from this and (6) that

∥Gi,n(ϵ0)−Gi−1,n(ϵ0)∥2L2
≤ Cn−2η,

22



and hence (A.1) holds with Θn = O(1) and Γn = n1−η.
Ad (A.3): For u ∈ [0, 1], define the limiting kernels

G̃u(ϵj) =

∫ 0

−∞
ḡ(s,Hu) dB̃s+j,

and, in view of (6),

Gu(ϵj) =

(
G̃u(ϵj)

2(
G̃u(ϵj) + 2G̃u(ϵj−1) + G̃u(ϵj−2)

)2
.

)

Then

∥G̃⌊un⌋,n(ϵ0)− G̃u(ϵ0)∥Lq ≤ C∥G̃⌊un⌋,n(ϵ0)− G̃u(ϵ0)∥L2

≤
∫ ⌊un⌋

−∞
|ḡ(s− ⌊un⌋, Hu)− g̃⌊un⌋,n(s)|2 ds

=

∫ 0

−∞

∣∣∣∣∣ḡ(s,Hu)−
σ ⌊un⌋+s

n

σ ⌊un⌋
n

n
H ⌊un⌋

n

−H ⌊un⌋+s
n ḡ(s,H ⌊un⌋+s

n

)

∣∣∣∣∣
2

ds

≤ 2

∫ 0

−∞

∣∣∣ḡ(s,Hu)− ḡ(s,H ⌊un⌋+s
n

)
∣∣∣2 ds

+ 2

∫ 0

−∞

∣∣∣∣∣1− σ ⌊un⌋+s
n

σ ⌊un⌋
n

n
H ⌊un⌋

n

−H ⌊un⌋+s
n

∣∣∣∣∣
2 ∣∣∣ḡ(s,H ⌊un⌋+s

n

)
∣∣∣2 ds

≤ Cn−2η + C

∫ −1

−∞

[
( |s|
n
)η ∧ 1

]2
sup

H∈[H,H]

∣∣ d
dH
g(s,H)

∣∣2 ds
+ C log(n)

∫ −1

−∞

[
( |s|
n
)η ∧ 1

]2
sup

H∈[H,H]

|g(s,H)|2 ds

≤ Cn−2η + C log(n)n−2η

∫ n

1

|s|2H+2η−5 ds+ C log(n)

∫ ∞

n

|s|2H−5 ds

≤ C log(n)n−2η

because |ḡ(s,H)| ≤ C|s|H− 5
2 and d

dH
|ḡ(s,H)| ≤ C(1+ log |s|)|s|H− 5

2 for |s| ≥ 1. That is,
upon choosing δ > 0 small enough, we find that for any q ≥ 2

∥G̃⌊un⌋,n(ϵ0)− G̃u(ϵ0)∥Lq ≤ Cn−δ.

Again, this directly yields that

∥G⌊un⌋,n(ϵ0)−Gu(ϵ0)∥Lq ≤ Cn−δ,

and hence
∫ 1

0
∥G⌊un⌋,n(ϵ0)−Gu(ϵ0)∥L2 du→ 0 as n→ ∞. This establishes (A.3).
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Rate constraints: In the previous steps, we have verified the conditions of Theorem 5 for
any q ≥ 2, for β = 3

2
, and with Γn ≍ n1−η, Λ2

n ≍ log(n)2n
1
2
−r + L2η

n n
1−2η, Ψn ≍ n1−η,

Φn = O(1), Θn = O(1). Upon choosing q large enough, we have ξ(q, β) = β−1
4β−2

= 1
8
,

hence

(Γn +Ψn)
β−1
2β

√
log(n)n−ξ(q,β) = n

1−η
6

√
log(n)n− 1

8 ,

which tends to zero if η > 1
4
. Moreover, upon choosing q large enough, we have

n− 1
2Λ2

n + ΛnL
−β
n + n

1
q
− 1

2Ln → 0

⇐= n
1
6
− r

3 ≪ Ln ≪ n
1
2
−δ for some δ > 0, and Ln ≪ n1− 1

4η .

Thus, we have shown that Theorem 5 is applicable under the conditions formulated in
Theorem 3.
Determining the asymptotic variance: The asymptotic local variance is given by

Σu =
∞∑

h=−∞

guCov(Gu(ϵ0), Gu(ϵh))g
T
u ,

gu =
1

2ΓHu(0)

(
−1

2−2Hu

)
.

The autocovariances may be computed as in Lemma 4, hence Cov(Gu(ϵ0), Gu(ϵh)) =
ΣHu(h) as therein. Thus,

Σu = τ 2(Hu),

τ 2(H) =
1

4ΓH(0)2

∞∑
h=−∞

(−1, 2−2H)ΣH(h)

(
−1
2−2H

)

=
1

2ΓH(0)2

∞∑
h=−∞

{
ΓH(h)

2 + 2−4H(2ΓH(h) + ΓH(h− 1) + ΓH(h+ 1))2

− 2−2H
[
(ΓH(h) + ΓH(h− 1))2 + (ΓH(h) + ΓH(h− 1))2

] }
=

1

2ΓH(0)2

∞∑
h=−∞

{
ΓH(h)

2 + 2−4H(2ΓH(h) + ΓH(h− 1) + ΓH(h+ 1))2

− 2−2H+1(ΓH(h) + ΓH(h− 1))2
}
.

(9)

Proof of Theorem 4. By Theorem 1, and as established in the proof of Theorem 3, we
have for any q ≥ 2

max
t=2Ln,...,n

|Ĥn(
t
n
)−H t

n
| P−→ 0.
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Hence,

sup
u∈[0,1]

∣∣∣∣∣∣ 1n
⌊un⌋∑
t=2L

τ 2(H( t
n
))− 1

n

⌊un⌋∑
t=2L

τ 2(Ĥn(
t
n
))

∣∣∣∣∣∣ P−→ 0.

Moreover, continuity of v 7→ Hv, and Ln/n→ 0, yields

sup
u∈[0,1]

∣∣∣∣∣∣
∫ u

0

τ 2(Hv) dv −
1

n

⌊un⌋∑
t=2Ln

τ 2(H( t
n
))

∣∣∣∣∣∣→ 0.

Proof of Proposition 1. Convergence under the null is a direct consequence of Theorems
3 and 4. Under the alternative, the function u 7→ H(u) is not linear. This holds
because v 7→ Hv is continuous, and hence Hv can not deviate at a single point v. Thus,
supu∈[0,1] |H(u)− uH(1)| > 0. Moreover, Theorem 3 yields ∥Ĥ − H∥∞ = O(1/

√
n) and

thus
√
nTCUSUM(Ĥ) → ∞ in probability, at rate

√
n. On the other hand, qn(α)

P−→ q(α)
as a consequence of Theorem 4. This establishes consistency of the test.

Proof of Proposition 2. The first claim holds because qn(α) → q(α) by Theorem 4, where

q(α) is the 1−α quantile of Z = supu |W (
∫ u

0
τ 2(Hv) dv)|, and

√
nT̂ (G0) ≤

√
nT̂ (H) ⇒ Z.

We proceed to prove the second claim. If G0 is closed, then G̃0 = {u 7→
∫ u

0
H̃(v) dv | H̃ ∈

G0} is also closed, and
∫
H(v) dv /∈ G̃0. Hence, supu∈[0,1] |

∫ u

0
H̃(v) dv −

∫ u

0
H̃(v) dv| > 0

for all H̃ ∈ G0. As
√
n(Ĥ −H) = oP (1), this implies that

√
nT̂ (G0)

P−→ ∞. On the other
hand, Theorem 4 yields convergence of qn(α) to a finite number, establishing consistency
of the test.
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