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Changepoint example

Annual water flow of the river Nile at Aswan

8 Hp : the process is stationary

- Hj : the process is not stationary
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Changepoint example

Annual water flow of the river Nile at Aswan

8 . Hp : the process is stationary
- ! Hj : the process is not stationary
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é Z | i Statistically similar applications:
§ : i > Trend changes in house prices
3 7] ! > Volatility change in a portfolio

‘ ‘ ' ' ' > Faults in a wind turbine
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> Quality degradation in a

vear manufacturing system
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How many structural breaks?
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How many structural breaks?
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Multiple changes in mean

Multiple change point problem

We observe Xi, ..., X, where

X = €t + it i
. ,

pe =Y n1(t € (reea, ). :
k=1

for centered error terms e, (typically iid). 8
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Multiple changes in mean

Multiple change point problem

We observe Xi, ..., X, where i
Xe = € + p, i

m ,

pe = p(t € (61, 7]). .

k=1 ,

for centered error terms e, (typically iid). 8

> Ay = pk — pk—1 (size of change)

> L = |7k — Tk—1| A |Tkq1 — 7x| (length of
change)
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Multiple changes in mean

Multiple change point problem

We observe Xi, ..., X, where i
Xe = € + p, i

m ,

pe = p(t € (61, 7]). .

k=1 ,

for centered error terms e, (typically iid). 8

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

» Ak = — jix1 (size of change) Detectability (Verzelen et al., 2023)

> Ly = |7k — Tk—1| N |Tk+1 — 7k| (length of Changepoint 74 is detectable if and only if

change)
Ex = A/ L > ,/IogL—”k
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Multiscale scan statistic for changepoints

scan statistic for interval (u, v] multiple testing correction

=

en
Iog|—

T,= sup inf[ sup v

1C[1,n] I (u v]CI
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Multiscale scan statistic for changepoints

o If c,, is chosen suitably:
scan statistic for interval (u, v] multiple testing correction

/—’T > P(T, > 0) < « under Hy,
log v—d 1 > P(T, >0) — 1if there is
at least one detectable
change

T,= sup inf| sup
IC[1,n] # uv]CI
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Multiscale scan statistic for changepoints

o If c,, is chosen suitably:
scan statistic for interval (u, v] multiple testing correction

/—’T > P(T, > 0) < « under Hy,
log m 1 > P(T, >0) — 1if there is
at least one detectable
change

T,= sup inf| sup
1C[1,n] I uv]CI

Critical value ¢, depends on the error terms ¢;
» Diimbgen and Spokoiny (2001) for Gaussian white noise
model
> Frick et al. (2014) for changepoints with Gaussian errors
and constraint |/| > log(n)3
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Multiscale scan statistic for changepoints

If ¢, is chosen suitably:

scan statistic for interval (u, v] multiple testing correction

—_—— 1 > P(T, > 0) <« under Hy,

en
log —— | > P(T,>0) — 1if there is
at least one detectable
change

T,= sup inf| sup
1C[1,n] I uv]CI

v — u|

Critical value ¢, depends on the error terms ¢;

» Diimbgen and Spokoiny (2001) for Gaussian white noise
model

> Frick et al. (2014) for changepoints with Gaussian errors
and constraint |/| > log(n)3

> Verzelen et al. (2023) consider sub-Gaussian errors and
1] > log(n)

> Dette et al. (2020) allow for stationary dependence, but
with the constraint |/| > n?/3
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Multiscale scan statistic for changepoints

scan statistic for interval (u, v]

log ———
IC[1,n] # (u v]CI

T,= sup inf[ sup

Critical value ¢, depends on the error terms ¢;

» Diimbgen and Spokoiny (2001) for Gaussian white noise
model

> Frick et al. (2014) for changepoints with Gaussian errors
and constraint |/| > log(n)3

> Verzelen et al. (2023) consider sub-Gaussian errors and
1] > log(n)

> Dette et al. (2020) allow for stationary dependence, but
with the constraint |/| > n?/3
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If ¢, is chosen suitably:

multiple testing correction

—_—— 1 > P(T, > 0) <« under Hy,

> P(T,>0) — 1 if there is
at least one detectable
change

Our contribution
Derive a procedure which is
> feasible
> optimal

> for dependent, nonstationary
errors

via novel asymptotic theory.
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Rewrite the statistic as a Holder norm

T,= sup inf| sup
IC[1,n] H (u,v]CI

en
— Ca |0g—
v UI]

( £

Step (i): bound the test statistic under Hp as

T Tym ap BUSON_ e ) B P
n>lp,= where € —T
O§u<l\)/<1 \/u—v lu—v| \/_t 1 t n
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Rewrite the statistic as a Holder norm

T,= sup inf| sup
IC[1,n] H (u,v]CI

en
v —u

( £

Step (i): bound the test statistic under Hp as
Lun] lun|
[5n(v) = Sn(u)] 1 u- S
T, <T;= su here Sp(u) = —= €t + ———="—¢€fun-
e SR e B m Cay 1o where Sp{u) = 72 D et — = efun

Step (ii): Reformulate the decision rule as

P |7 O A 0]

= o

o<u<v<1 \/|u — v]log(e/|u — v])
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Rewrite the statistic as a Holder norm

Z

T,= sup infl sup
t u+1

IC[1,n] * | (u,v]ClI

Step (i): bound the test statistic under Hp as
Lun] lun|
[5n(v) = Sn(u)] fog 1 u- S
T.<T;= su here Sp(u) = —= Y &+ ——="—€run-
O§u<l\)/<1 \/|u—v where Sn(u) ﬁ; ‘ N fun]

Step (ii): Reformulate the decision rule as Step (iii): Rewrite as Holder norm with modulus

po(h) = +/A(L +Tog F)
T,:= sup 150(v) = 5n(u) > Cq

o<ucvst /o — v[Iog(e/lu — V]) To = Snllpo 2 0Bl ?
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Asymptotic critical values

Theorem
> Let S, 2 Win (5[0, 1], for a Gaussian process W, and (Donsker's theorem)
> the increments of S, are sub-Gaussian, ||S,(t) — Sp(V)|ly, < Cy/|u — v|. (tightness)

Then there exists a tyg > 0 such that

P(ISalloy > t) = P([IWllp, > t) Vit = to.
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Asymptotic critical values

Theorem

> Let S, 2 Win (5[0, 1], for a Gaussian process W, and

> the increments of S, are sub-Gaussian, ||S,(t) — Sp(V)|ly, < Cy/|u — v|.
Then there exists a tyg > 0 such that

(Donsker's theorem)

(tightness)

P(ISalloy > t) = P([IWllp, > t) Vit = to.

Question 1: Is this just weak convergence?
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Asymptotic critical values

Theorem

> Let S, 2 Win (5[0, 1], for a Gaussian process W, and

> the increments of S, are sub-Gaussian, ||S,(t) — Sp(V)|ly, < Cy/|u — v|.
Then there exists a tyg > 0 such that

(Donsker's theorem)

(tightness)

P(ISalloy > t) = P([IWllp, > t) Vit = to.

Question 1: Is this just weak convergence?
> po(h) = \/hlog(e/h) is exactly the modulus of continuity of a Brownian motion
> Brownian motion belongs to C*°, but its probability measure is not tight.

> However, we do obtain weak convergence in the Holder space C”, for all p(h) > po(h).
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Asymptotic critical values

Theorem

d . .
> Let S, — W in ([0, 1], for a Gaussian process W, and (it dizm)

> the increments of S, are sub-Gaussian, ||S,(t) — Sp(V)||w, < Cy/|u — v|. (tightness)
Then there exists a ty > 0 such that

PISallos > 1) = P([IWllp, > 1)Vt > to.

Question 2: What happens at t < t,?
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Asymptotic critical values

Theorem

d . .
> Let S, — W in ([0, 1], for a Gaussian process W, and (it dizm)

> the increments of S, are sub-Gaussian, ||S,(t) — Sp(V)||w, < Cy/|u — v|. (tightness)
Then there exists a ty > 0 such that

PISallos > 1) = P([IWllp, > 1)Vt > to.

Question 2: What happens at t < t,?
> Let X, S NV(0,1),
> and X! = V2N, - X;, for N; ' Ber(0.5)

> We have S, %5 W and S 45 W, but X! has a larger sub-Gaussian norm.

n—oo n— oo
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Asymptotic critical values

Theorem
> Let S, < Win (5[0, 1], for a Gaussian process W, and (Donsker's theorem)
> the increments of S, are sub-Gaussian, ||S,(t) — Sp(V)||y, < Cy/|u — v|. (tightness)

Then there exists a tg > 0 such that

P(lISnllpo > t) = P(IWllp > t) Vt > to.
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Asymptotic critical values

Theorem
> Let S, < Win (5[0, 1], for a Gaussian process W, and (Donsker's theorem)
> the increments of S, are sub-Gaussian, ||S,(t) — Sp(V)||y, < Cy/|u — v|. (tightness)

Then there exists a tg > 0 such that

P(lISnllpo > t) = P(IWllp > t) Vt > to.

» B i Statistical implication:
£ o7 1
g | i > Use multiscale statistic with critical
- | value ¢, such that P(|W|,, > cn) < a
< o I
g i > If o is small enough, the test will be
C. I asymptotically valid.
[= I
i’ B T T T T L T T

1.0 15 20 25 3.0 3.5

Distribution of ||Sp || pg (n = 21%) with same variance, but different sub-Gaussian norm.
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Bootstrapping critical values
What is the limit W?

If the errors €; are suitably ergodic
and locally-stationary, then

Sa(u) %5 W(u) = /Ouas dB,

and o2 is the local
long-run-variance.
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Bootstrapping critical values

Approximate W based on 7, /< N(0,1) as

Lnu] t
1 1
W:(U):— E <— E Xt—ﬁt>'7]t,
\/F t=b \/E s=t—b+1

What is the limit W?

If the errors €; are suitably ergodic
and locally-stationary, then

Sa(u) %5 W(u) = /Ouas dB,

and o2 is the local
long-run-variance.
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Bootstrapping critical values
What is the limit W?

Approximate W based on 7, /< N(0,1) as _ _
If the errors €; are suitably ergodic

1 Lnu] 1 t and locally-stationary, then
W:(”):ﬁz<ﬁ Z Xt—ﬁt>'77t, J u
t=b s=t—b+1 Sn(u) — W(u) = / os dBs
0
and
. . and o2 is the local
T = sup [Wa (u) = Wi (v)| long-run-variance.
. .

|lu—v|>c, p0(|u— VD
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Bootstrapping critical values
What is the limit W?

. iid
Approximate W based on 7, ~ N(0,1) as
PP e (0.1) If the errors €; are suitably ergodic

1 Lnu] 1 t and locally-stationary, then
W:(”):ﬁz:(\/g Z Xt—ﬁt>'77t, J u
t=b s=t—b+1 Sn(u) — W(u) = / os dBs
0
and
. . and o2 is the local
T = sup (Wi (u) - W, (V)| long-run-variance.

lu—v|>cy p0(|u_ VD
Bootstrap consistency

> If b= b,, and ¢, are chosen
suitably, and

> %Z::l e — pe|* = O(n™")
for some n > 0,

then (T21X1, .-, Xn) —2 [| W]l
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Bootstrapping critical values

Approximate W based on 7; i N(0,1) as

A AR
W:(U)_Z< Z Xt‘ﬁt)'ﬁt»
ﬁt:b ﬁs:t—bJrl
and
N A ORI G)

|lu—v|>c, p0(|u_ VD

(i) Compute the multiscale test statistic T,
(ii) Estimate ¢ nonparametrically

(iii) Sample T} repeatedly as above, to obtain an
approximate quantile ¢,

(iv) Detect a change if T, > &,.

What is the limit W?

If the errors €; are suitably ergodic
and locally-stationary, then

So(u) - W(u) = /Ouas dB.

and o2 is the local
long-run-variance.

Bootstrap consistency

> If b= b, and ¢, are chosen
suitably, and

> %Zgzl e — pe|* = O(n™")
for some 1 > 0,

then (T[ Xy, ..., X,) -2 | W||,,
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Intervals of significance

73 TV regularized > As T, =sup; T,(/) is in the form of a scan
rue mean . . . . .

-{ @ significant interval statistic, we also find interval estimates.

| I, ..., I, for the changepoints, where

| f Tn(lk) > 6a i

> As in Fryzlewicz (2023), we find that with
probability at least 1 — «, every I contains
at least one changepoint:

00 02 04 08 08 10 lim inf P (/} NrT#0vi=1,..., m) > a
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Intervals of significance

73 TV regularized > As T, =sup; T,(/) is in the form of a scan
rue mean
-{ @ significant interval statlstlc we also find interval estimates.
i /1, .. I for the changepoints, where
| 7 Tn(lk) > Co
i > As in Fryzlewicz (2023), we find that with
probability at least 1 — «, every I contains
] at least one changepoint:
L T T T T T T N
00 02 04 08 08 10 liminf P (lJ NT#OVYj=1,..., ﬁv) >«

Proposition (Power)
If the k-th changepoint 7, satisfies Axv/Ly > +/log(n/Ly), then

P(Ta(l) > &) — 1.
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Technicalities: Increments of the partial sum process

Recall: We require the interpolated partial sum process S,(u) to satisfy
(i) S,= W in G(0,1)

(i1) Sn(u) = Sn(V)ll, < C/|u = v|
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Technicalities: Increments of the partial sum process

Recall: We require the interpolated partial sum process S,(u) to satisfy
(i) S,= W in G(0,1)
(i) [[Sn(u) = Sa(V)lly, < C/Ju— v

Assumption (Local stationarity) Definition

The noise process is given by For any h € N, define the sub-Gaussian physical
dependence measure of (€;)tcz as
€t = €t,n = Gt/n(nta Mt—1, - - )
Oy, () = sup [[Gu(ne) = Gu(ne)lly, -
for n; L U(0,1), and the mapping u — G,(n) has
bounded variation, measured in || - ||,

> 8y,(h) = O(h=277) is sufficient for S, = W.
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Technicalities: Increments of the partial sum process

Recall: We require the interpolated partial sum process S,(u) to satisfy
(i) S,= W in G(0,1)
(i) [[Sn(u) = Sa(V)lly, < C/Ju— v

Assumption (Local stationarity) Definition

The noise process is given by For any h € N, define the sub-Gaussian physical
dependence measure of (€;)tcz as
€t = €t,n = Gt/n(nta Mt—1, - - )
Oy, () = sup [[Gu(ne) = Gu(ne)lly, -
for n; L U(0,1), and the mapping u — G,(n) has
bounded variation, measured in || - ||,

Theorem

> 0y,(h) = O(h=277) is sufficient for S, = W. 152(1) — Su(V)lgs < sz Vi50,0)
j=1
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Technicalities: Bootstrap consistency

Theorem
Suppose that

> the noise ¢, is locally stationary, and its physical dependence measure decays as dy,(j) = O(~3),
and

> the mean estimator satisfies 2 37 | [fe — pe|> = O, (n™7).

then the 2-Wasserstein distance between T, and the (X-conditional) distribution of T} is bounded as

Ay, (T, TH)? = log(n) o, ((g) PR n—77/4> :

po(cn) Vb

Fabian Mies Bootstrapping multiscale scan statistics
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Summary

Methodological findings:

(i) Asymptotic threshold ¢, for multiscale statistic only depends on second moments

(i) Sub-Gaussian variance determines for which significance levels « the asymptotic threshold is
applicable.

(iii) Consider smallest scales of the data, but neglect them when bootstrapping.
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Summary

Methodological findings:

(i) Asymptotic threshold ¢, for multiscale statistic only depends on second moments

(ii) Sub-Gaussian variance determines for which significance levels « the asymptotic threshold is
applicable.

(iii) Consider smallest scales of the data, but neglect them when bootstrapping.

Thank you for your attention!
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