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Changepoint example

H0 : the process is stationary
H1 : the process is not stationary
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Changepoint example

H0 : the process is stationary
H1 : the process is not stationary

Statistically similar applications:

➤ Trend changes in house prices

➤ Volatility change in a portfolio

➤ Faults in a wind turbine

➤ Quality degradation in a
manufacturing system
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How many structural breaks?
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Multiple changes in mean

Multiple change point problem

We observe X1, . . . ,Xn where

Xt = ϵt + µt ,

µt =
m∑

k=1

µ(k)1(t ∈ (τk−1, τk ]).

for centered error terms ϵt (typically iid).

➤ ∆k = µk − µk−1 (size of change)

➤ Lk = |τk − τk−1| ∧ |τk+1 − τk | (length of
change)

Detectability (Verzelen et al., 2023)

Changepoint τk is detectable if and only if

Ek = ∆k

√
Lk ≫

√
log n

Lk
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Multiscale scan statistic for changepoints

Tn = sup
I⊂[1,n]

inf
µ

[ scan statistic for interval (u, v ]︷ ︸︸ ︷
sup

(u,v ]⊂I

∣∣∣∣∣ 1√
|v − u|

v∑
t=u+1

(Xt − µ)

∣∣∣∣∣−
multiple testing correction︷ ︸︸ ︷
cα

√
log

e n

|v − u|

]

If cα is chosen suitably:

➤ P(Tn > 0) ≤ α under H0,

➤ P(Tn > 0) → 1 if there is
at least one detectable
change

Critical value cα depends on the error terms ϵt

➤ Dümbgen and Spokoiny (2001) for Gaussian white noise
model

➤ Frick et al. (2014) for changepoints with Gaussian errors
and constraint |I | ≫ log(n)3

➤ Verzelen et al. (2023) consider sub-Gaussian errors and
|I | ≫ log(n)

➤ Dette et al. (2020) allow for stationary dependence, but
with the constraint |I | ≫ n2/3

Our contribution

Derive a procedure which is

➤ feasible

➤ optimal

➤ for dependent, nonstationary
errors

via novel asymptotic theory.
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Rewrite the statistic as a Hölder norm

Tn = sup
I⊂[1,n]

inf
µ

[
sup

(u,v ]⊂I

∣∣∣∣∣ 1√
|v − u|

v∑
t=u+1

(Xt − µ)

∣∣∣∣∣− cα

√
log

e n

|v − u|

]

Step (i): bound the test statistic under H0 as

Tn ≤ T ∗
n = sup

0≤u<v≤1

|Sn(v)− Sn(u)|√
|u − v |

− cα

√
log

e

|u − v |
, where Sn(u) =

1√
n

⌊un⌋∑
t=1

ϵt +
u − ⌊un⌋

n√
n

ϵ⌈un⌉.

Step (ii): Reformulate the decision rule as

T n := sup
0≤u<v≤1

|Sn(v)− Sn(u)|√
|u − v | log(e/|u − v |)

> cα

Step (iii): Rewrite as Hölder norm with modulus
ρ0(h) =

√
h(1 + log h)

T n := ∥Sn∥ρ0
d−→ ∥σB∥ρ0 ?

Fabian Mies Bootstrapping multiscale scan statistics Bochum, 2024-08-13 5 / 11



Rewrite the statistic as a Hölder norm
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Tn = sup
I⊂[1,n]

inf
µ

[
sup

(u,v ]⊂I

∣∣∣∣∣ 1√
|v − u|

v∑
t=u+1

(Xt − µ)

∣∣∣∣∣− cα

√
log

e n

|v − u|

]

Step (i): bound the test statistic under H0 as

Tn ≤ T ∗
n = sup

0≤u<v≤1

|Sn(v)− Sn(u)|√
|u − v |

− cα

√
log

e

|u − v |
, where Sn(u) =

1√
n

⌊un⌋∑
t=1

ϵt +
u − ⌊un⌋

n√
n

ϵ⌈un⌉.

Step (ii): Reformulate the decision rule as

T n := sup
0≤u<v≤1

|Sn(v)− Sn(u)|√
|u − v | log(e/|u − v |)

> cα

Step (iii): Rewrite as Hölder norm with modulus
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Asymptotic critical values

Theorem

➤ Let Sn
d−→ W in C0[0, 1], for a Gaussian process W , and (Donsker’s theorem)

➤ the increments of Sn are sub-Gaussian, ∥Sn(u)− Sn(v)∥ψ2 ≤ C
√
|u − v |. (tightness)

Then there exists a t0 > 0 such that

P (∥Sn∥ρ0 > t) → P (∥W ∥ρ0 > t) ∀t ≥ t0.

Question 1: Is this just weak convergence?

➤ ρ0(h) =
√
h log(e/h) is exactly the modulus of continuity of a Brownian motion

➤ Brownian motion belongs to Cρ0 , but its probability measure is not tight.

➤ However, we do obtain weak convergence in the Hölder space Cρ, for all ρ(h) ≫ ρ0(h).
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P (∥Sn∥ρ0 > t) → P (∥W ∥ρ0 > t) ∀t ≥ t0.

Question 2: What happens at t < t0?

➤ Let Xt
iid∼ N (0, 1),

➤ and X ′
t =

√
2Nt · Xt , for Nt

iid∼ Ber(0.5)

➤ We have Sn
d−→

n→∞
W and S ′

n
d−→

n→∞
W , but X ′

t has a larger sub-Gaussian norm.
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√
|u − v |. (tightness)

Then there exists a t0 > 0 such that

P (∥Sn∥ρ0 > t) → P (∥W ∥ρ0 > t) ∀t ≥ t0.

Distribution of ∥Sn∥ρ0 (n = 215) with same variance, but different sub-Gaussian norm.

Statistical implication:

➤ Use multiscale statistic with critical
value cα such that P(∥W ∥ρ0 > cα) ≤ α

➤ If α is small enough, the test will be
asymptotically valid.
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Bootstrapping critical values
What is the limit W ?

If the errors ϵt are suitably ergodic
and locally-stationary, then

Sn(u)
d−→ W (u) =

∫ u

0

σs dBs

and σ2
s is the local

long-run-variance.

Bootstrap consistency

➤ If b = bn and cn are chosen
suitably, and

➤
1
n

∑n
t=1 |µ̂t − µt |2 = O(n−η)

for some η > 0,

then (T ∗
n |X1, . . . ,Xn)

d−→ ∥W ∥ρ0
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Bootstrapping critical values

Approximate W based on ηt
iid∼ N (0, 1) as

W ∗
n (u) =

1√
n

⌊nu⌋∑
t=b

(
1√
b

t∑
s=t−b+1

Xt − µ̂t

)
· ηt ,
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(i) Compute the multiscale test statistic Tn

(ii) Estimate µt nonparametrically

(iii) Sample T ∗
n repeatedly as above, to obtain an

approximate quantile ĉα

(iv) Detect a change if Tn > ĉα.

What is the limit W ?

If the errors ϵt are suitably ergodic
and locally-stationary, then

Sn(u)
d−→ W (u) =

∫ u

0

σs dBs

and σ2
s is the local

long-run-variance.

Bootstrap consistency

➤ If b = bn and cn are chosen
suitably, and

➤
1
n

∑n
t=1 |µ̂t − µt |2 = O(n−η)

for some η > 0,

then (T ∗
n |X1, . . . ,Xn)

d−→ ∥W ∥ρ0
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Intervals of significance

➤ As Tn = supI Tn(I ) is in the form of a scan
statistic, we also find interval estimates.
Î1, . . . , Îm for the changepoints, where

Tn(Îk) > ĉα .

➤ As in Fryzlewicz (2023), we find that with

probability at least 1− α, every Îk contains
at least one changepoint:

lim inf P
(
Îj ∩ τ ̸= ∅ ∀j = 1, . . . , m̂

)
≥ α

Proposition (Power)

If the k-th changepoint τk satisfies ∆k

√
Lk ≫

√
log(n/Lk), then

P(Tn(I ) > ĉα) → 1.
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Technicalities: Increments of the partial sum process
Recall: We require the interpolated partial sum process Sn(u) to satisfy

(i) Sn ⇒W in C0(0, 1)

(ii) ∥Sn(u)− Sn(v)∥ψ2 ≤ C
√
|u − v |

Assumption (Local stationarity)

The noise process is given by

ϵt = ϵt,n = Gt/n(ηt , ηt−1, . . .)

for ηi
iid∼ U(0, 1), and the mapping u 7→ Gu(η) has

bounded variation, measured in ∥ · ∥ψ2 .

Definition

For any h ∈ N, define the sub-Gaussian physical
dependence measure of (ϵt)t∈Z as

δψ2(h) := sup
u

∥Gu(ηt)− Gu(ηt,h)∥ψ2
.

➤ δψ2(h) = O(h−2−η) is sufficient for Sn ⇒W .

Theorem

∥Sn(u)− Sn(v)∥ψ2 ≤ C
√
|u − v |

∞∑
j=1

√
jδψ2(j)
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Technicalities: Bootstrap consistency

Theorem

Suppose that

➤ the noise ϵt is locally stationary, and its physical dependence measure decays as δψ2(j) = O(j−3),
and

➤ the mean estimator satisfies 1
n

∑n
t=1 |µ̂t − µt |2 = OLp (n

−η).

then the 2-Wasserstein distance between Tn and the (X -conditional) distribution of T ∗
n is bounded as

dW2(Tn,T
∗
n )

2 =
log(n)

ρ0(cn)
OP

((
b

n

) 1
4

+
1√
b
+ n−η/4

)
.
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Summary

Methodological findings:

(i) Asymptotic threshold cα for multiscale statistic only depends on second moments

(ii) Sub-Gaussian variance determines for which significance levels α the asymptotic threshold is
applicable.

(iii) Consider smallest scales of the data, but neglect them when bootstrapping.

Thank you for your attention!
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