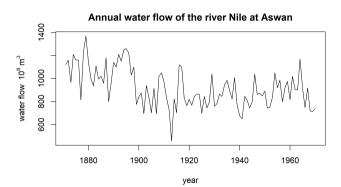
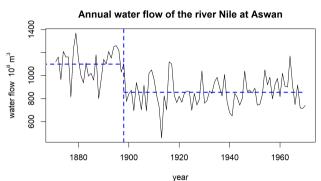
Sharp multiscale change detection for time series

Johann Köhne (University of Göttingen) <u>Fabian Mies</u> (Delft University of Technology)

11th Bernoulli-IMS World Congress 2024-08-13, Bochum

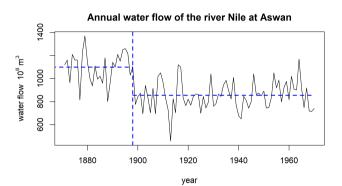


 H_0 : the process is stationary H_1 : the process is not stationary

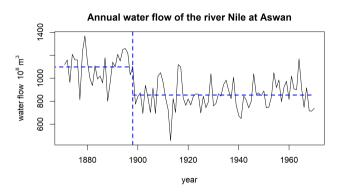


.

 H_0 : the process is stationary H_1 : the process is not stationary



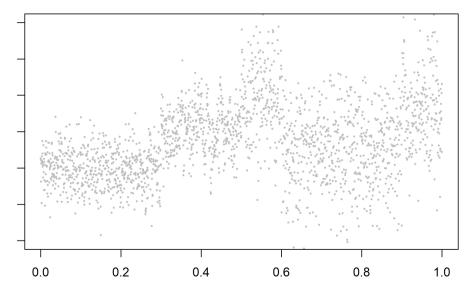
 H_0 : the process is stationary H_1 : the process is not stationary

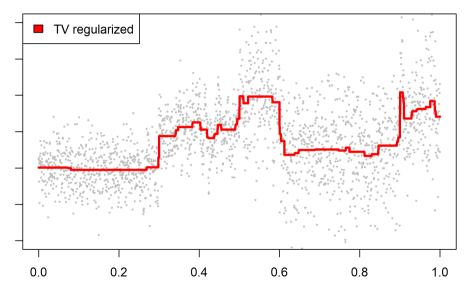


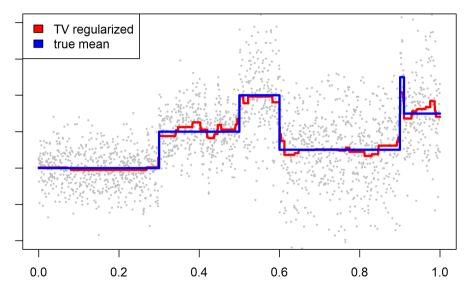
 H_0 : the process is stationary H_1 : the process is not stationary

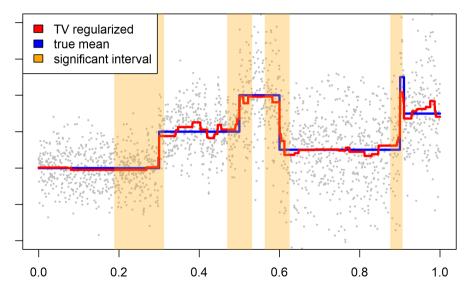
Statistically similar applications:

- Trend changes in house prices
- Volatility change in a portfolio
- > Faults in a wind turbine
- Quality degradation in a manufacturing system









Multiple changes in mean

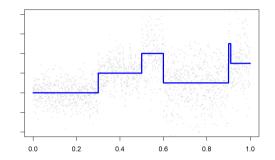
Multiple change point problem

We observe X_1, \ldots, X_n where

$$X_t = \epsilon_t + \mu_t,$$

$$\mu_t = \sum_{k=1}^m \mu^{(k)} \mathbb{1}(t \in (\tau_{k-1}, \tau_k]).$$

for centered error terms ϵ_t (typically iid).



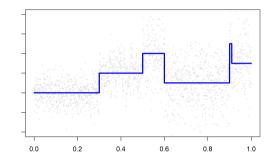
Multiple changes in mean

Multiple change point problem

We observe X_1, \ldots, X_n where

$$\begin{aligned} X_t &= \epsilon_t + \mu_t, \\ \mu_t &= \sum_{k=1}^m \mu^{(k)} \mathbb{1}(t \in (\tau_{k-1}, \tau_k]). \end{aligned}$$

for centered error terms ϵ_t (typically iid).



Multiple changes in mean

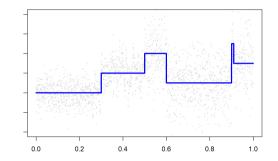
Multiple change point problem

We observe X_1, \ldots, X_n where

$$X_t = \epsilon_t + \mu_t,$$

$$\mu_t = \sum_{k=1}^m \mu^{(k)} \mathbb{1}(t \in (\tau_{k-1}, \tau_k]).$$

for centered error terms ϵ_t (typically iid).

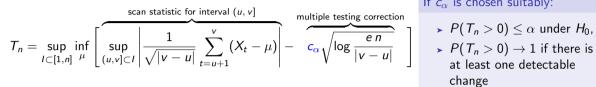


Detectability (Verzelen et al., 2023)

Changepoint τ_k is detectable if and only if

$$E_k = \Delta_k \sqrt{L_k} \gg \sqrt{\log \frac{n}{L_k}}$$

$$T_n = \sup_{l \in [1,n]} \inf_{\mu} \left[\underbrace{\sup_{(u,v] \subset l} \left| \frac{1}{\sqrt{|v-u|}} \sum_{t=u+1}^{v} (X_t - \mu) \right|}_{(u,v] \subset l} - \underbrace{\sum_{i=u+1}^{v} (X_i - \mu)}_{(u,v] \subset i} \right]$$



- ▶ $P(T_n > 0) \leq \alpha$ under H_0 ,
- at least one detectable change

$$T_n = \sup_{l \in [1,n]} \inf_{\mu} \left[\underbrace{\sup_{(u,v] \in I} \left| \frac{1}{\sqrt{|v-u|}} \sum_{t=u+1}^{v} (X_t - \mu) \right|}_{(u,v] \in I} - \underbrace{\sum_{i=u+1}^{v} (X_i - \mu)}_{(u,v] \in I} \right]$$

Critical value c_{α} depends on the error terms ϵ_t

- Dümbgen and Spokoiny (2001) for Gaussian white noise model
- Frick et al. (2014) for changepoints with Gaussian errors and constraint |*I*| ≫ log(*n*)³

- ▶ $P(T_n > 0) \le \alpha$ under H_0 ,
- ▶ $P(T_n > 0) \rightarrow 1$ if there is at least one detectable change

$$T_n = \sup_{l \in [1,n]} \inf_{\mu} \left[\underbrace{\sup_{(u,v] \subset l} \left| \frac{1}{\sqrt{|v-u|}} \sum_{t=u+1}^{v} (X_t - \mu) \right|}_{(u,v] \subset l} - \underbrace{\sum_{(u,v] \subset l} \left| \frac{1}{\sqrt{|v-u|}} \sum_{t=u+1}^{v} (X_t - \mu) \right|}_{(u,v] \subset l} \right]$$

Critical value c_{α} depends on the error terms ϵ_t

- Dümbgen and Spokoiny (2001) for Gaussian white noise model
- > Frick et al. (2014) for changepoints with Gaussian errors and constraint $|I| \gg \log(n)^3$
- > Verzelen et al. (2023) consider sub-Gaussian errors and $|I| \gg \log(n)$

- ▶ $P(T_n > 0) \le \alpha$ under H_0 ,
- ▶ $P(T_n > 0) \rightarrow 1$ if there is at least one detectable change

$$T_n = \sup_{l \in [1,n]} \inf_{\mu} \left[\underbrace{\sup_{(u,v] \subset l} \left| \frac{1}{\sqrt{|v-u|}} \sum_{t=u+1}^{v} (X_t - \mu) \right|}_{(u,v] \subset l} - \underbrace{\sum_{(u,v] \subset l} \left| \frac{1}{\sqrt{|v-u|}} \sum_{t=u+1}^{v} (X_t - \mu) \right|}_{(u,v] \subset l} \right]$$

Critical value c_{α} depends on the error terms ϵ_t

- Dümbgen and Spokoiny (2001) for Gaussian white noise model
- > Frick et al. (2014) for changepoints with Gaussian errors and constraint $|I| \gg \log(n)^3$
- > Verzelen et al. (2023) consider sub-Gaussian errors and $|I| \gg \log(n)$
- > Dette et al. (2020) allow for stationary dependence, but with the constraint $|I| \gg n^{2/3}$

- ▶ $P(T_n > 0) \le \alpha$ under H_0 ,
- ▶ $P(T_n > 0) \rightarrow 1$ if there is at least one detectable change

$$T_n = \sup_{l \in [1,n]} \inf_{\mu} \left[\underbrace{\sup_{(u,v] \subset l} \left| \frac{1}{\sqrt{|v-u|}} \sum_{t=u+1}^{v} (X_t - \mu) \right|}_{(u,v] \subset l} - \underbrace{\sum_{\mu=1}^{v} \left| \frac{1}{\sqrt{|v-u|}} \sum_{t=u+1}^{v} (X_t - \mu) \right|}_{(u,v] \subset l} \right]$$

Critical value c_{lpha} depends on the error terms ϵ_t

- Dümbgen and Spokoiny (2001) for Gaussian white noise model
- Frick et al. (2014) for changepoints with Gaussian errors and constraint |I| ≫ log(n)³
- > Verzelen et al. (2023) consider sub-Gaussian errors and $|I| \gg \log(n)$
- > Dette et al. (2020) allow for stationary dependence, but with the constraint $|I| \gg n^{2/3}$

If c_{α} is chosen suitably:

- ▶ $P(T_n > 0) \le \alpha$ under H_0 ,
- ▶ $P(T_n > 0) \rightarrow 1$ if there is at least one detectable change

Our contribution

Derive a procedure which is

- ▶ feasible
- ▶ optimal
- for dependent, nonstationary errors
- via novel asymptotic theory.

Rewrite the statistic as a Hölder norm

$$T_n = \sup_{I \subset [1,n]} \inf_{\mu} \left[\sup_{(u,v] \subset I} \left| \frac{1}{\sqrt{|v-u|}} \sum_{t=u+1}^{v} (X_t - \mu) \right| - c_\alpha \sqrt{\log \frac{e n}{|v-u|}} \right]$$

Step (i): bound the test statistic under H_0 as

$$T_n \leq T_n^* = \sup_{0 \leq u < v \leq 1} \frac{|S_n(v) - S_n(u)|}{\sqrt{|u - v|}} - c_\alpha \sqrt{\log \frac{e}{|u - v|}}, \quad \text{where } S_n(u) = \frac{1}{\sqrt{n}} \sum_{t=1}^{\lfloor un \rfloor} \epsilon_t + \frac{u - \frac{\lfloor un \rfloor}{n}}{\sqrt{n}} \epsilon_{\lceil un \rceil}.$$

Rewrite the statistic as a Hölder norm

$$T_n = \sup_{I \subset [1,n]} \inf_{\mu} \left[\sup_{(u,v] \subset I} \left| \frac{1}{\sqrt{|v-u|}} \sum_{t=u+1}^{v} (X_t - \mu) \right| - c_\alpha \sqrt{\log \frac{e n}{|v-u|}} \right]$$

Step (i): bound the test statistic under H_0 as

$$T_n \leq T_n^* = \sup_{0 \leq u < v \leq 1} \frac{|S_n(v) - S_n(u)|}{\sqrt{|u - v|}} - c_\alpha \sqrt{\log \frac{e}{|u - v|}}, \quad \text{where } S_n(u) = \frac{1}{\sqrt{n}} \sum_{t=1}^{\lfloor un \rfloor} \epsilon_t + \frac{u - \frac{\lfloor un \rfloor}{n}}{\sqrt{n}} \epsilon_{\lceil un \rceil}.$$

Step (ii): Reformulate the decision rule as

$$\overline{T}_n := \sup_{0 \le u < v \le 1} \frac{|S_n(v) - S_n(u)|}{\sqrt{|u - v|\log(e/|u - v|)}} > c_\alpha$$

Rewrite the statistic as a Hölder norm

$$T_n = \sup_{I \subset [1,n]} \inf_{\mu} \left[\sup_{(u,v] \subset I} \left| \frac{1}{\sqrt{|v-u|}} \sum_{t=u+1}^{v} (X_t - \mu) \right| - c_\alpha \sqrt{\log \frac{e n}{|v-u|}} \right]$$

Step (i): bound the test statistic under H_0 as

$$T_n \leq T_n^* = \sup_{0 \leq u < v \leq 1} \frac{|S_n(v) - S_n(u)|}{\sqrt{|u - v|}} - c_\alpha \sqrt{\log \frac{e}{|u - v|}}, \quad \text{where } S_n(u) = \frac{1}{\sqrt{n}} \sum_{t=1}^{\lfloor un \rfloor} \epsilon_t + \frac{u - \frac{\lfloor un \rfloor}{n}}{\sqrt{n}} \epsilon_{\lceil un \rceil}.$$

Step (ii): Reformulate the decision rule as

$$\overline{T}_n := \sup_{0 \le u < v \le 1} \frac{|S_n(v) - S_n(u)|}{\sqrt{|u - v|\log(e/|u - v|)}} > c_\alpha$$

Step (iii): Rewrite as Hölder norm with modulus $\rho_0(h) = \sqrt{h(1 + \log h)}$

$$\overline{T}_n := \|S_n\|_{\rho_0} \stackrel{d}{\longrightarrow} \|\sigma B\|_{\rho_0}$$
?

Theorem

▶ Let
$$S_n \stackrel{d}{\longrightarrow} W$$
 in $C_0[0,1]$, for a Gaussian process W , and

(Donsker's theorem)

(tightness)

> the increments of S_n are sub-Gaussian, $\|S_n(u) - S_n(v)\|_{\psi_2} \leq C\sqrt{|u-v|}$.

Then there exists a $t_0 > 0$ such that

$$P\left(\|S_n\|_{
ho_0}>t
ight)
ightarrow P\left(\|W\|_{
ho_0}>t
ight) \quad orall t\geq t_0.$$

Theorem

▶ Let
$$S_n \stackrel{d}{\longrightarrow} W$$
 in $C_0[0,1]$, for a Gaussian process W , and

(Donsker's theorem)

(tightness)

> the increments of S_n are sub-Gaussian, $\|S_n(u) - S_n(v)\|_{\psi_2} \le C\sqrt{|u-v|}$.

Then there exists a $t_0 > 0$ such that

$$P\left(\|S_n\|_{
ho_0}>t
ight)
ightarrow P\left(\|W\|_{
ho_0}>t
ight) \quad orall t\geq t_0.$$

Question 1: Is this just weak convergence?

Theorem

- Let
$$S_n \stackrel{d}{\longrightarrow} W$$
 in $C_0[0,1]$, for a Gaussian process W , and

(Donsker's theorem)

(tightness)

> the increments of S_n are sub-Gaussian, $\|S_n(u) - S_n(v)\|_{\psi_2} \leq C\sqrt{|u-v|}$.

Then there exists a $t_0 > 0$ such that

$$P\left(\|S_n\|_{
ho_0}>t
ight)
ightarrow P\left(\|W\|_{
ho_0}>t
ight) \quad orall t\geq t_0.$$

Question 1: Is this just weak convergence?

- > $\rho_0(h) = \sqrt{h \log(e/h)}$ is exactly the modulus of continuity of a Brownian motion
- > Brownian motion belongs to C^{ρ_0} , but its probability measure is **not tight**.
- > However, we do obtain weak convergence in the Hölder space C^{ρ} , for all $\rho(h) \gg \rho_0(h)$.

Theorem

- Let
$$S_n \stackrel{d}{\longrightarrow} W$$
 in $C_0[0,1]$, for a Gaussian process W , and

 \succ the increments of S_n are sub-Gaussian, $\|S_n(u) - S_n(v)\|_{\psi_2} \leq C\sqrt{|u-v|}$.

Then there exists a $t_0 > 0$ such that

$$P\left(\|S_n\|_{
ho_0}>t
ight)
ightarrow P\left(\|W\|_{
ho_0}>t
ight) \quad orall t\geq t_0.$$

Question 2: What happens at $t < t_0$?

(Donsker's theorem)

Theorem

▶ Let
$$S_n \stackrel{d}{\longrightarrow} W$$
 in $C_0[0,1]$, for a Gaussian process W , and

▶ the increments of
$$S_n$$
 are sub-Gaussian, $\|S_n(u) - S_n(v)\|_{\psi_2} \le C\sqrt{|u-v|}$.

Then there exists a $t_0 > 0$ such that

$$P\left(\|S_n\|_{
ho_0}>t
ight)
ightarrow P\left(\|W\|_{
ho_0}>t
ight) \quad orall t\geq t_0.$$

Question 2: What happens at $t < t_0$?

- ▶ Let $X_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$,
- ▶ and $X'_t = \sqrt{2}N_t \cdot X_t$, for $N_t \stackrel{\text{iid}}{\sim} \text{Ber}(0.5)$

$$\succ \text{ We have } S_n \xrightarrow[n \to \infty]{d} W \text{ and } S'_n \xrightarrow[n \to \infty]{d} W \text{, but } X'_t \text{ has a larger sub-Gaussian norm.}$$

(Donsker's theorem)

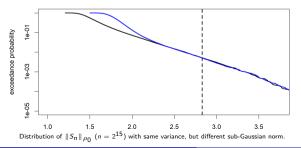
Theorem

- Let
$$S_n \stackrel{d}{\longrightarrow} W$$
 in $C_0[0,1]$, for a Gaussian process W , and

> the increments of
$$S_n$$
 are sub-Gaussian, $\|S_n(u) - S_n(v)\|_{\psi_2} \leq C\sqrt{|u-v|}$.

Then there exists a $t_0 > 0$ such that

$$P\left(\|S_n\|_{
ho_0}>t
ight)
ightarrow P\left(\|W\|_{
ho_0}>t
ight) \quad orall t\geq t_0.$$



(Donsker's theorem)

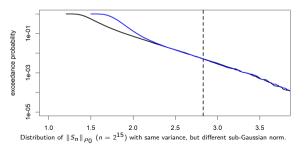
Theorem

- Let
$$S_n \stackrel{d}{\longrightarrow} W$$
 in $C_0[0,1]$, for a Gaussian process W , and

> the increments of S_n are sub-Gaussian, $\|S_n(u) - S_n(v)\|_{\psi_2} \leq C\sqrt{|u-v|}$.

Then there exists a $t_0 > 0$ such that

$$P\left(\|S_n\|_{
ho_0}>t
ight)
ightarrow P\left(\|W\|_{
ho_0}>t
ight) \quad orall t\geq t_0.$$



Statistical implication:

- ▶ Use multiscale statistic with critical value c_{α} such that $P(||W||_{\rho_0} > c_{\alpha}) \leq \alpha$
- > If α is small enough, the test will be asymptotically valid.

Fabian Mies

(Donsker's theorem)

What is the limit W?

If the errors ϵ_t are suitably ergodic and locally-stationary, then

$$S_n(u) \stackrel{d}{\longrightarrow} W(u) = \int_0^u \sigma_s \, dB_s$$

and σ_s^2 is the local long-run-variance.

Approximate W based on $\eta_t \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(0,1)$ as

$$W_n^*(u) = \frac{1}{\sqrt{n}} \sum_{t=b}^{\lfloor nu \rfloor} \left(\frac{1}{\sqrt{b}} \sum_{s=t-b+1}^t X_t - \widehat{\mu}_t \right) \cdot \eta_t,$$

What is the limit W?

If the errors ϵ_t are suitably ergodic and locally-stationary, then

$$S_n(u) \stackrel{d}{\longrightarrow} W(u) = \int_0^u \sigma_s \, dB_s$$

and σ_s^2 is the local long-run-variance.

Approximate W based on $\eta_t \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(0,1)$ as

$$W_n^*(u) = \frac{1}{\sqrt{n}} \sum_{t=b}^{\lfloor nu \rfloor} \left(\frac{1}{\sqrt{b}} \sum_{s=t-b+1}^t X_t - \widehat{\mu}_t \right) \cdot \eta_t,$$

and

$$T_n^* = \sup_{|u-v|>c_n} \frac{|W_n^*(u) - W_n^*(v)|}{\rho_0(|u-v|)}.$$

What is the limit W?

If the errors ϵ_t are suitably ergodic and locally-stationary, then

$$S_n(u) \stackrel{d}{\longrightarrow} W(u) = \int_0^u \sigma_s \, dB_s$$

and σ_s^2 is the local long-run-variance.

Approximate W based on $\eta_t \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(0,1)$ as

$$W_n^*(u) = \frac{1}{\sqrt{n}} \sum_{t=b}^{\lfloor nu \rfloor} \left(\frac{1}{\sqrt{b}} \sum_{s=t-b+1}^t X_t - \widehat{\mu}_t \right) \cdot \eta_t,$$

and

$$T_n^* = \sup_{|u-v|>c_n} \frac{|W_n^*(u) - W_n^*(v)|}{\rho_0(|u-v|)}.$$

What is the limit W?

If the errors ϵ_t are suitably ergodic and locally-stationary, then

$$S_n(u) \stackrel{d}{\longrightarrow} W(u) = \int_0^u \sigma_s \, dB_s$$

and σ_s^2 is the local long-run-variance.

Bootstrap consistency

- ➤ If b = b_n and c_n are chosen suitably, and
- $> \frac{1}{n} \sum_{t=1}^{n} |\hat{\mu}_t \mu_t|^2 = \mathcal{O}(n^{-\eta})$ for some $\eta > 0$,

then $(T_n^*|X_1,\ldots,X_n) \stackrel{d}{\longrightarrow} \|W\|_{\rho_0}$

Approximate W based on $\eta_t \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(0,1)$ as

$$W_n^*(u) = \frac{1}{\sqrt{n}} \sum_{t=b}^{\lfloor nu \rfloor} \left(\frac{1}{\sqrt{b}} \sum_{s=t-b+1}^t X_t - \widehat{\mu}_t \right) \cdot \eta_t,$$

and

$$T_n^* = \sup_{|u-v|>c_n} \frac{|W_n^*(u) - W_n^*(v)|}{\rho_0(|u-v|)}.$$

- (i) Compute the multiscale test statistic T_n
- (ii) Estimate μ_t nonparametrically
- (iii) Sample T_n^* repeatedly as above, to obtain an approximate quantile \hat{c}_{α}
- (iv) Detect a change if $T_n > \hat{c}_{\alpha}$.

What is the limit W?

If the errors ϵ_t are suitably ergodic and locally-stationary, then

$$S_n(u) \stackrel{d}{\longrightarrow} W(u) = \int_0^u \sigma_s \, dB_s$$

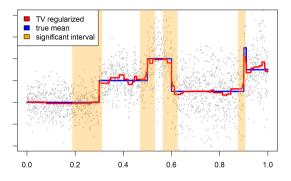
and σ_s^2 is the local long-run-variance.

Bootstrap consistency

- If $b = b_n$ and c_n are chosen suitably, and
- $\label{eq:product} \begin{array}{l} \star \ \frac{1}{n} \sum_{t=1}^n |\hat{\mu}_t \mu_t|^2 = \mathcal{O}(n^{-\eta}) \\ \text{for some } \eta > 0, \end{array} \end{array}$

then $(T_n^*|X_1,\ldots,X_n) \stackrel{d}{\longrightarrow} \|W\|_{
ho_0}$

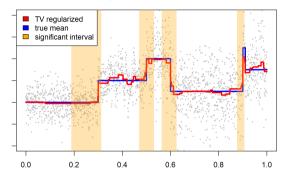
Intervals of significance



- > As $T_n = \sup_I T_n(I)$ is in the form of a scan statistic, we also find interval estimates. $\hat{l}_1, \dots, \hat{l}_m$ for the changepoints, where $T_n(\hat{l}_k) > \hat{c}_{\alpha}$.
- > As in Fryzlewicz (2023), we find that with probability at least 1α , every \hat{l}_k contains at least one changepoint:

$$\liminf P\left(\hat{l}_{j} \cap oldsymbol{ au}
eq \emptyset \; orall j = 1, \dots, \hat{m}
ight) \geq lpha$$

Intervals of significance



- > As $T_n = \sup_I T_n(I)$ is in the form of a scan statistic, we also find interval estimates. $\hat{l}_1, \dots, \hat{l}_m$ for the changepoints, where $T_n(\hat{l}_k) > \hat{c}_{\alpha}$.
- > As in Fryzlewicz (2023), we find that with probability at least 1α , every \hat{l}_k contains at least one changepoint:

lim inf
$$P\left(\hat{l}_{j}\cap oldsymbol{ au}
eq \emptyset \; orall j=1,\ldots,\hat{m}
ight) \geq lpha$$

Proposition (Power)

If the k-th changepoint τ_k satisfies $\Delta_k \sqrt{L_k} \gg \sqrt{\log(n/L_k)}$, then

 $P(T_n(I) > \hat{c}_{\alpha}) \rightarrow 1.$

Technicalities: Increments of the partial sum process

Recall: We require the interpolated partial sum process $S_n(u)$ to satisfy

(i) $S_n \Rightarrow W$ in $C_0(0,1)$ (ii) $\|S_n(u) - S_n(v)\|_{\psi_2} \le C\sqrt{|u-v|}$

Technicalities: Increments of the partial sum process

Recall: We require the interpolated partial sum process $S_n(u)$ to satisfy

(i) $S_n \Rightarrow W$ in $C_0(0,1)$ (ii) $\|S_n(u) - S_n(v)\|_{\psi_2} \le C\sqrt{|u-v|}$

Assumption (Local stationarity)

The noise process is given by

 $\epsilon_t = \epsilon_{t,n} = G_{t/n}(\eta_t, \eta_{t-1}, \ldots)$

for $\eta_i \stackrel{\text{iid}}{\sim} U(0, 1)$, and the mapping $u \mapsto G_u(\eta)$ has bounded variation, measured in $\|\cdot\|_{\psi_2}$.

Definition

For any $h \in \mathbb{N}$, define the sub-Gaussian physical dependence measure of $(\epsilon_t)_{t \in \mathbb{Z}}$ as

$$\delta_{\psi_2}(h) := \sup_u \left\| G_u(\eta_t) - G_u(\eta_{t,h}) \right\|_{\psi_2}.$$

•
$$\delta_{\psi_2}(h) = \mathcal{O}(h^{-2-\eta})$$
 is sufficient for $S_n \Rightarrow W$.

Technicalities: Increments of the partial sum process

Recall: We require the interpolated partial sum process $S_n(u)$ to satisfy

(i) $S_n \Rightarrow W$ in $C_0(0,1)$ (ii) $\|S_n(u) - S_n(v)\|_{\psi_2} \le C\sqrt{|u-v|}$

Assumption (Local stationarity)

The noise process is given by

$$\epsilon_t = \epsilon_{t,n} = G_{t/n}(\eta_t, \eta_{t-1}, \ldots)$$

for $\eta_i \stackrel{\text{iid}}{\sim} U(0,1)$, and the mapping $u \mapsto G_u(\eta)$ has bounded variation, measured in $\|\cdot\|_{\psi_2}$.

Definition

For any $h \in \mathbb{N}$, define the sub-Gaussian physical dependence measure of $(\epsilon_t)_{t \in \mathbb{Z}}$ as

$$\delta_{\psi_2}(h) := \sup_u \left\| \mathsf{G}_u(\eta_t) - \mathsf{G}_u(\eta_{t,h}) \right\|_{\psi_2}.$$

Theorem

•
$$\delta_{\psi_2}(h) = \mathcal{O}(h^{-2-\eta})$$
 is sufficient for $S_n \Rightarrow W$.

$$\|\mathcal{S}_n(u) - \mathcal{S}_n(v)\|_{\psi_2} \leq C\sqrt{|u-v|}\sum_{j=1}^\infty \sqrt{j}\delta_{\psi_2}(j)$$

Technicalities: Bootstrap consistency

Theorem

Suppose that

- > the noise ϵ_t is locally stationary, and its physical dependence measure decays as $\delta_{\psi_2}(j) = \mathcal{O}(j^{-3})$, and
- > the mean estimator satisfies $\frac{1}{n}\sum_{t=1}^{n}|\hat{\mu}_t \mu_t|^2 = \mathcal{O}_{L_p}(n^{-\eta}).$

then the 2-Wasserstein distance between T_n and the (X-conditional) distribution of T_n^* is bounded as

$$d_{W_2}(T_n, T_n^*)^2 = \frac{\log(n)}{\rho_0(c_n)} \mathcal{O}_P\left(\left(\frac{b}{n}\right)^{\frac{1}{4}} + \frac{1}{\sqrt{b}} + n^{-\eta/4}\right).$$

Summary

Methodological findings:

- (i) Asymptotic threshold c_{lpha} for multiscale statistic only depends on second moments
- (ii) Sub-Gaussian variance determines for which significance levels α the asymptotic threshold is applicable.
- (iii) Consider smallest scales of the data, but neglect them when bootstrapping.

Summary

Methodological findings:

- (i) Asymptotic threshold c_{lpha} for multiscale statistic only depends on second moments
- (ii) Sub-Gaussian variance determines for which significance levels α the asymptotic threshold is applicable.
- (iii) Consider smallest scales of the data, but neglect them when bootstrapping.

Thank you for your attention!

- Dette, H., Eckle, T., and Vetter, M. (2020). Multiscale change point detection for dependent data. *Scandinavian Journal of Statistics*, 47(4):1243–1274.
- Dümbgen, L. and Spokoiny, V. G. (2001). Multiscale Testing of Qualitative Hypotheses. *The Annals of Statistics*, 29(1).
- Frick, K., Munk, A., and Sieling, H. (2014). Multiscale change point inference. *Journal of the Royal Statistical Society: Series B: Statistical Methodology*, pages 495–580. Publisher: JSTOR.
- Fryzlewicz, P. (2023). Narrowest Significance Pursuit: inference for multiple change-points in linear models. *Journal of American Statistical Association*. arXiv: 2009.05431.
- Verzelen, N., Fromont, M., Lerasle, M., and Reynaud-Bouret, P. (2023). Optimal Change-Point Detection and Localization. *The Annals of Statistics*, 51(4):1586–1610. arXiv: 2010.11470.